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Introduction

The GL2 Kuznetsov formula relates, for fixed integers m, n ̸= 0 and h a
“nice” test function, a sum of terms of the form

h(tu)am(u)an(u),

where u varies among Hecke Maaß forms, am(u) is the m-th Fourier
coefficient of u, and tu is the spectral parameter of u to a sum of
Kloosterman sums, plus a continuous contribution from Eisenstein series.

Analogue for GSp4:

• Maaß forms ↭ K∞-fixed functions in cuspidal automorphic
representations of GSp4,

• Fourier coefficients ↭ Whittaker coefficients.

Methods of proof:
- Inner product of Poincaré series: Kuznetsov (GL2), Blomer,
Buttcane (GL3), Man (GSp4),...
- Relative trace formula: Zagier (unpublished), Knightly-Li.
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Automorphic forms on GSp4

The group GSp4

GSp4 = {g ∈ GL4 : ∃µ(g) ∈ GL1,
⊤gJg = µ(g)J}, where J =

[
I2

−I2

]
.

Parabolic subgroups P = NPMP :

• Borel subgroup B: NB = U =

[
1 ∗ ∗
∗ 1 ∗ ∗

1 ∗
1

]
∩GSp4,

MB = A =

[ ∗
∗
∗
∗

]
∩GSp4 ≃ GL1 ×GL1 ×GL1,

• Siegel, Klingen subgroups: B ⊂ P, NP ⊂ U, MP ≃ GL1 ×GL2.

Some compact subgroups:

K∞ ⊂ GSp4(R) = {g ∈ GSp4(R), g = ⊤g−1} ∼= U(2)× {±1}

Kp = GSp4(Zp) ⊂ GSp4(Qp),

Kp(N) =

{
g ∈ GSp4(Zp) : g ≡

[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N

}
,

K = K∞
∏

p Kp ⊂ GSp4(AQ), K (N) = K∞
∏

p Kp ⊂ GSp4(AQ).
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Félicien Comtat (Queen Mary University of London)The Kuznetsov formula for GSp4 March 29th 2022 5 / 27



5/27

Automorphic forms on GSp4

The group GSp4

GSp4 = {g ∈ GL4 : ∃µ(g) ∈ GL1,
⊤gJg = µ(g)J}, where J =

[
I2

−I2

]
.

Parabolic subgroups P = NPMP :

• Borel subgroup B: NB = U =

[
1 ∗ ∗
∗ 1 ∗ ∗

1 ∗
1

]
∩GSp4,

MB = A =

[ ∗
∗
∗
∗

]
∩GSp4 ≃ GL1 ×GL1 ×GL1,

• Siegel, Klingen subgroups: B ⊂ P, NP ⊂ U, MP ≃ GL1 ×GL2.

Some compact subgroups:

K∞ ⊂ GSp4(R) = {g ∈ GSp4(R), g = ⊤g−1} ∼= U(2)× {±1}

Kp = GSp4(Zp) ⊂ GSp4(Qp),

Kp(N) =

{
g ∈ GSp4(Zp) : g ≡

[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N

}
,

K = K∞
∏

p Kp ⊂ GSp4(AQ), K (N) = K∞
∏

p Kp ⊂ GSp4(AQ).
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Automorphic forms on GSp4

The Langlands spectral decomposition

Consider the representation of GSp4(AQ) on L2(R>0GSp4(Q)\GSp4(AQ))
given by g · ϕ = ϕ(·g). It decomposes as

L2(R>0GSp4(Q)\GSp4(AQ)) =
⊕
ω

L2(ω),

where ω runs over characters of R>0Q×\A×
Q and L2(ω) is subspace

consisting in function ϕ that satisfy ϕ(gz) = ω(z)ϕ(g) for all z ∈ A×
Q.

Fix such a character ω. Then we have L2(ω) = L2disc ⊕ L2cont , where

• L2cont is a direct integral of representations induced from parabolic
subgroups by Eisenstein series attached to characters and to
automorphic forms on GL1 ×GL2, respectively.

• L2disc is a direct sum of irreducible representations π with central
character ω.

An irreducible automorphic representation π is called cuspidal if for every
parabolic P every ϕ ∈ π satisfies

∫
NP(Q)\NP(A) ϕ(ux)du = 0 for all x .

Analogue of Maaß forms: K∞-fixed elements of cuspidal representations π.
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Automorphic forms on GSp4

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The ψ-Whittaker coefficient of
ϕ is by definition

Wϕ(x) =

∫
U(Q)\U(AQ)

ϕ(ux)ψ(u)du.

Unlike the case of GL2, Wϕ is not always non-zero, even if ϕ is not
constant. For instance, Whittaker coefficients of Siegel modular forms are
always zero.
If π is an irreducible automorphic representation which contains an
automorphic form ϕ with Wϕ ̸≡ 0, then we say π is generic.
This is equivalent to say π has a ψ-Whittaker model, i.e, can be realized
by right translation on a space of functions W with moderate growth and
satisfying

W (ug) = ψ(u)W (g)

for all u ∈ U.
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The trace formula
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The trace formula

The automorphic kernel

Let f : GSp4(AQ) → C be a smooth function satisfying f (gz) = ω(z)f (g),
compactly supported mod centre. Then we have an operator R(f ) on
L2(ω) defined by

(R(f )ϕ)(x) =

∫
G(A)

f (y)ϕ(xy)dy =

∫
G(Q)\G(A)

Kf (x , y)ϕ(y)dy ,

where Kf (x , y) =
∑

γ∈G(Q) f (x
−1γy).

Informally, we have (R(f )ϕ)(x) = ⟨Kf (x , ·), ϕ⟩. So if B is an orthonormal
basis of L2disc we expect

Kf (x , y) =
∑
ϕ∈B

⟨Kf (x , ·), ϕ⟩ϕ(y) + cont.

=
∑
ϕ∈B

(R(f )ϕ)(x)ϕ(y) + cont.
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The trace formula

The choice of the test function

Each irreducible automorphic representation π factors as π ∼=
⊗

p≤∞ πv . If
f also factors, then the operator R(f ) induces an operator πv (fv ) on the
space of each representation πv .

If f is left and right K∞-invariant, then π∞(f∞) has its image in πK∞ and
annihilate the orthogonal complement of this space.
But πK∞ has dimension at most one, say πK∞ = C · ϕ∞, so
π∞(f∞) = λf ,π∞ϕ∞.

Similarly it is possible to arrange the choice of f so that each π
Kp(N)
p has a

basis of eigenvectors of πp(fp), and πp(fp) annihilate the complement of
this space.
For this choice of f , taking Bπ(N) the basis of πK(N) obtained by the
tensor product of the local basis, we obtain

Kf (x , y) =
∑
π

∑
ϕ∈Bπ(N)

λf (ϕ)ϕ(x)ϕ(y) + cont.
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The trace formula

The spectral side

Integrating previous expression against ψ(x)ψ(y) over (U(Q)\U(AQ))
2 we

obtain∫
(U(Q)\U(AQ))2

Kf (xt1, yt2)ψ(x)ψ(y)dxdy =
∑
π

∑
ϕ∈Bπ(N)

λf (ϕ)Wϕ(t1)Wϕ(t2)

+cont.

On the RHS, only representations π which are generic and have a non-zero
K (N)-fixed vector contribute.

It is known that the Archimedean
component must then be a principal series representation, i.e, induced
from a character a 7→ aρ+ν of A.
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component must then be a principal series representation, i.e, induced
from a character a 7→ aρ+ν of A.

Félicien Comtat (Queen Mary University of London)The Kuznetsov formula for GSp4 March 29th 2022 11 / 27



12/27

The trace formula

The spherical transform

In the standard induced model, the K∞-fixed vector ϕ∞ is given by
ϕ∞(nak) = aρ+ν , and hence the eigenvalue λf ,π∞ is given by

λf ,π∞ = (π∞(f∞)ϕ∞)(1) =

∫
G(R)

f∞(g)π∞(g)ϕ(1)dg

=

∫
U(R)

∫
A(R)

f (na)aρ+νdadn
.
= f̃ (ν),

where f̃ is the spherical transform of f∞.

So the spectral side becomes∑
π

f̃ (νπ)
∑

ϕ∈Bπ(N)

λffin(ϕ)Wϕ(t1)Wϕ(t2) + cont.

where νπ ∈ Lie(A)∗ is the spectral parameter of π∞.
By Harish-Chandra Paley-Wiener’s theorem, it is known that, choosing
appropriately the test function f∞, we can produce any Paley-Wiener test
function h = f̃ on the spectral side.
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The trace formula

The geometric side

From now on, we assume t1, t2 ∈ A(Q). By definition of the kernel, the
integral we considered may be written as∑
γ∈G(Q)

∫
(U(Q)\U(AQ))2

f (t−1
1 x−1γyt2)ψ(x)ψ(y)dxdy =

∑
γ∈U(Q)\G(Q)/U(Q)

Iγ(f ),

where

Iγ(f ) =

∫
Hγ(Q)\U(AQ)2

f (x−1t−1
1 γt2y)ψ(t1xt

−1
1 )ψ(t2yt

−1
2 )dxdy ,

Hγ = {(x , y) ∈ U2, x−1γy = γ}.

Using the Bruhat decomposition,
U(Q)\G (Q)/U(Q) consists in elements σδ, where σ ranges over the Weyl
group, and δ over A(Q).
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The trace formula

Non-Archimedean part of the geometric side

By the bi-K (N)-invariance property of f , the non-Archimedean part of Iσδ
reduces to a finite sum Kloosσ(δ, ffin,N). For simplicity, assume now that
ffin is “trivial”.

For σ = 1, only δ = 1 has a non-zero contribution, which is
roughly δ(t1, t2).
Among the other seven elements from the Weyl group, only the longest
three give a non-zero contribution, with various divisibility conditions on
the entries of δ.
So the geometric side becomes

I1,∞(f∞)δ(t1, t2) +
∑
δ

Iσ1δ,∞(f∞)Kloosσ1(δ,N)

+
∑
δ

Iσ2δ,∞(f∞)Kloosσ2(δ,N)

+
∑
δ

Iσlδ,∞(f∞)Kloosσl
(δ,N)
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Félicien Comtat (Queen Mary University of London)The Kuznetsov formula for GSp4 March 29th 2022 14 / 27



14/27

The trace formula

Non-Archimedean part of the geometric side

By the bi-K (N)-invariance property of f , the non-Archimedean part of Iσδ
reduces to a finite sum Kloosσ(δ, ffin,N). For simplicity, assume now that
ffin is “trivial”.
For σ = 1, only δ = 1 has a non-zero contribution, which is
roughly δ(t1, t2).
Among the other seven elements from the Weyl group, only the longest
three give a non-zero contribution, with various divisibility conditions on
the entries of δ.

So the geometric side becomes

I1,∞(f∞)δ(t1, t2) +
∑
δ

Iσ1δ,∞(f∞)Kloosσ1(δ,N)

+
∑
δ

Iσ2δ,∞(f∞)Kloosσ2(δ,N)

+
∑
δ

Iσlδ,∞(f∞)Kloosσl
(δ,N)
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The trace formula

Archimedean part of the geometric side

After a change of variable, the Archimedean part of Iσδ(f ) is given by∫
Uσ(R)\U(R)

∫
U(R)

f (u−1
1 t−1

1 σδt2u2)ψ(t1u
−1
1 t−1

1 )ψ(t2u2t
−1
2 )du1du2.

Using Wallach’s Whittaker inversion, we can show∫
U(R)

f (tug)ψ(u)du =

∫
Lie(A)∗

f̃ (ν)W (−ν, g , ψ)W (ν, t−1, ψ)dspec(ν),

where W (−ν, ·, ψ) is the ψ-Whittakher function with spectral
parameter −ν = the K∞-fixed vector in the Whittakher model of the
principal series representation with spectral parameter −ν.
Under some conjectural interchange of integral, the whole integral would
become ∫

Lie(A)∗
f̃ (ν)W (−ν, t2, ψ)W (ν, t1, ψ)Kσ(−iν, δ)dspec(ν),

where Kσ is a generalised Bessel function.
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Applications
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Applications

Satake parameters

Fix a prime p and let πp be an irreducible admissible representation of
GSp4(Qp) which has a Kp-fixed vector and trivial central character.
It is known that πp is the unique spherical subquotient of a representation

induced from a character of the form

[
x
y
tx−1

ty−1

]
7→ σ(t)χ1(x)χ2(y)

for some unramified characters χ1, χ2, σ satisfying σ2χ1χ2 = 1.

Unramified characters of Q×
p are uniquely determined by their value at p,

hence πp is completely determined by the pair (α, β) = (σ(p), σ(p)χ1(p)).
Conversely, the pair (α, β) is uniquely determined by πp, up to the action
of the Weyl group. It is called he Satake parameters of πp.
πp is tempered if and only if it Satake parameters (α, β) ∈ S1 × S1. It is
believed that if πp is the local constituent of the automorphic
representation attached to a GSp4 Maaß form, then πp is tempered
(Generalised Ramanujan Conjecture).
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Applications

Equidistribution of Satake parameters

Let F(N) =
⋃

π Bπ(N), orthonormal basis of the space of K (N)-fixed
Maaß forms on GSp(A).

Fix a prime p and for ϕ ∈ π denote by
(αp,ϕ, βp,ϕ) the Satake parameters of πp. Also fix the test function h = f̃
in the Kuznetsov formula. Define w(ϕ) = h(νϕ)|Wϕ(1)|2. I want to show
that the set

{(αp,ϕ, βp,ϕ) : ϕ ∈ F(N)} ⊂ C2/W ,

weighted by w(ϕ), equidistributes with respect to the GSp4 Sato-Tate
measure µST as N tends to infinity among integers coprimes to p.
This means that for any continuous bounded W -invariant function f
on C2 we have

lim
N→∞

∑
ϕ∈F(N) w(ϕ)f (αp,ϕ, βp,ϕ)∑

ϕ∈F(N) w(ϕ)
=

∫
C2/W

fdµST .

This is consistent with the Generalised Ramanujan Conjecture.

Félicien Comtat (Queen Mary University of London)The Kuznetsov formula for GSp4 March 29th 2022 18 / 27



18/27

Applications

Equidistribution of Satake parameters

Let F(N) =
⋃

π Bπ(N), orthonormal basis of the space of K (N)-fixed
Maaß forms on GSp(A). Fix a prime p and for ϕ ∈ π denote by
(αp,ϕ, βp,ϕ) the Satake parameters of πp. Also fix the test function h = f̃
in the Kuznetsov formula. Define w(ϕ) = h(νϕ)|Wϕ(1)|2. I want to show
that the set

{(αp,ϕ, βp,ϕ) : ϕ ∈ F(N)} ⊂ C2/W ,

weighted by w(ϕ), equidistributes with respect to the GSp4 Sato-Tate
measure µST as N tends to infinity among integers coprimes to p.

This means that for any continuous bounded W -invariant function f
on C2 we have

lim
N→∞

∑
ϕ∈F(N) w(ϕ)f (αp,ϕ, βp,ϕ)∑

ϕ∈F(N) w(ϕ)
=

∫
C2/W

fdµST .

This is consistent with the Generalised Ramanujan Conjecture.
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Applications

Strategy

Taking t1 = 1 and t2 =

 pi

pj

pk−i

pk−j

, the cuspidal term in the spectral

side of the Kuznetsov formula gives∑
ϕ∈F(N)

w(ϕ)fi ,j ,k(αp,ϕ, βp,ϕ)

with fi ,j ,k(α, β) = Wα,β

 pi

pj

pk−i

pk−j

 , where Wα,β is the

(normalized) Whittaker function for the representation of GSp4(Qp) with
Satake parameters (α, β).

The identity contribution in the geometric side is δ(i ,j ,k)=(0,0,0).
Moreover, f0,0,0 = 1, and, using the Casselman-Shalika formula, one can
show that the various fi ,j ,k are orthogonal for the Sato-Tate measure, and
span the space of continuous functions on (S1 × S1)/W . So only remains
to bound the continuous contribution and the sum of Kloosterman sums.
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Applications

The continuous contributions

Formally similar to the cuspidal contribution with following modifications∑
π⊂L2disc (GSp4)

↭
∫
ν∈iLie(AP)∗

∑
π⊂L2disc (MP)

ϕ ∈ π ↭ E (·, u, ν) ∈ Ind
GSp4
P (1NP

⊗ exp(ν)⊗ π) ,

where u ranges over an ON basis Bπ of the space HP(π) of functions st

• u is left-invariant by NP(A),
• for all k ∈ GSp4(A) we have uk

.
= [m 7→ u(mk)] ∈ π

• u is right-invariant by K (N),

and

E (x , u, ν) =
∑

γ∈P(Q)\GSp4(Q)

u(γx) exp((ν + ρP)(HP(γx))).

For all ν ∈ Lie(AP)
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Applications

Explicit description of HP(π)

By the Iwasawa decomposition, u is completely determined by (uk)k∈K .

The right-K (N)-invariance implies that for all γ ∈ K (N) we have

ukγ = uk .

Note that if γ ∈ P(A) ∩ K then we have

uγk(m) = u(mγk) = [π(γ)uk ](m).

In particular, if γk · K (N) = k · K (N) then π(γ)uk = uk . Hence

HP(π) ≃
⊕

k∈(P(A)∩K)\K/K(N)

VP(k , π)

u 7→ (uk)

where VP(k , π) is the (finite dimensional) space of vectors in π that are
invariant by ΓP,k(N)

.
= StabP(A)∩K (k · K (N)).
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Félicien Comtat (Queen Mary University of London)The Kuznetsov formula for GSp4 March 29th 2022 21 / 27



21/27

Applications

Explicit description of HP(π)

By the Iwasawa decomposition, u is completely determined by (uk)k∈K .
The right-K (N)-invariance implies that for all γ ∈ K (N) we have

ukγ = uk .

Note that if γ ∈ P(A) ∩ K then we have

uγk(m) = u(mγk) = [π(γ)uk ](m).

In particular, if γk · K (N) = k · K (N) then π(γ)uk = uk .

Hence

HP(π) ≃
⊕

k∈(P(A)∩K)\K/K(N)

VP(k , π)

u 7→ (uk)

where VP(k , π) is the (finite dimensional) space of vectors in π that are
invariant by ΓP,k(N)

.
= StabP(A)∩K (k · K (N)).
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Applications

Orthonormal basis of HP(π)

The relevant inner product on HP(π) is given by

⟨u, v⟩ =
∫
K

∫
MP(Q)AP(R)\MP(A)

u(mk)v(mk)dmdk

=
∑

k∈K/K(N)

⟨uk , vk⟩L2(MP(Q)AP(R)\MP(A))

=
∑

k∈(P(A)∩K)\K/K(N)

#Ok⟨uk , vk⟩L2(MP(Q)AP(R)\MP(A)),

where Ok is the P(A) ∩ K -orbit of k · K (N) inside K/K (N).
Fix an orthonormal basis (uk,j)j of VP(k , π). Consider an orthonormal
basis Bπ =

(
u(k,i)

)
(k,i)

of HP(π). Then for all h ∈ (P ∩ K )\K/K (N)

u
(k,i)
h =

1√
#Oh

∑
j

c
(k,i)
h,j uh,j , with

∑
h,j

c
(k1,i1)
h,j c

(k2,i2)
h,j = δ(k1,i1)=(k2,i2).
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Applications

An optimization problem

We want to bound∑
π⊂L2disc (MP)

h(ν + νπ)
∑
k,i

WE(·,u(k,i),ν)(t1)WE(·,u(k,i),ν)(t2).

We bound

|WE(·,u,ν)(t)| ≤ ∥u∥∞
∫
U(Q)\U(A)

E (ut, 1, ν)du

and ∥u∥∞ = maxh supm |u(mh)| = maxh ∥uh∥∞. Suppose we know
∥uh,j∥∞ ≪ X . We want to bound

∑
k,i

max
h

1√
#Oh

∑
j

|c(k,i)h,j |∥uh,j∥∞

2

≪ X 2
∑
k,i

max
h

1√
#Oh

∑
j

|c(k,i)h,j |

2

.
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Applications

The choice of an orthonormal basis

Take

u
(k,i)
h =

{
chuh,i if #Ok ≈ #Oh

0 otherwise,

so that

|c(k,i)h,j | =

{
δi=jch if #Ok ≈ #Oh

0 otherwise,

we can take |ch| as small as 1√
dh

where dh = #{k : #Ok ≈ Oh}.
If #Ok ≈ #Oh then dh = dk , and hence the contribution from π is
bounded by

X 2
∑
k,i

1

dk#Ok
≪ X 2

∑
k

dim(VP(k , π))

dk#Ok
.
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Applications

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

X 2
∑
k

1

dk#Ok

∑
π⊂L2disc (MP)

h(ν + νπ) dim(VP(k , π)).

To conclude the argument we need

• A count for the discrete spectrum of MP ,

• Sup norm bounds for uk,j ,
• Lower bounds for the size of #Ok .

We can use the Weyl law and sup norm bounds for Maaß forms on GL2.
Evaluating the size of the orbits yields a different counting problem for
each parabolic P.
The factor 1

dk
is important as it allows to regroup the orbits that have

similar sizes e.g. in dyadic slices.
In reality, the argument is more complicated as there are small orbits.
Instead of bounding ∥uk,j∥∞ uniformly, we need a bound that depends
on k .
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Bounding the sums of Kloosterman sums

Because f has compact support, the set of δ’s such that∫
Uσ(R)\U(R)

∫
U(R)

f (u−1
1 t−1

1 σδt2u2)ψ(t1u
−1
1 t−1

1 )ψ(t2u2t
−1
2 )du1du2 ̸= 0

is compact.
But the summation over δ is subject to some divisibility-by-N
conditions.The upshot is as N gets large, only the identity contribution will
remain on the geometric side (our formula is arguably more of a
“pre-Kuznetsov” formula).
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THANK YOU FOR YOUR ATTENTION!
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