The Kuznetsov formula for GSp_4

Félicien Comtat

Queen Mary University of London

March 29th 2022

Introduction

The GL₂ Kuznetsov formula relates, for **fixed** integers $m, n \neq 0$ and h a "nice" test function, a sum of terms of the form

 $h(t_u)a_m(u)\overline{a_n(u)},$

where u varies among **Hecke Maaß forms**, $a_m(u)$ is the *m*-th **Fourier coefficient** of u, and t_u is the spectral parameter of u to a sum of Kloosterman sums, plus a continuous contribution from Eisenstein series.

Introduction

The GL₂ Kuznetsov formula relates, for **fixed** integers $m, n \neq 0$ and h a "nice" test function, a sum of terms of the form

 $h(t_u)a_m(u)\overline{a_n(u)},$

where u varies among **Hecke Maaß forms**, $a_m(u)$ is the *m*-th **Fourier coefficient** of u, and t_u is the spectral parameter of u to a sum of Kloosterman sums, plus a continuous contribution from Eisenstein series. Analogue for GSp₄:

- Maaß forms $\longleftrightarrow K_{\infty}$ -fixed functions in cuspidal automorphic representations of GSp_4 ,
- Fourier coefficients <---> Whittaker coefficients.

Introduction

The GL₂ Kuznetsov formula relates, for **fixed** integers $m, n \neq 0$ and h a "nice" test function, a sum of terms of the form

 $h(t_u)a_m(u)\overline{a_n(u)},$

where u varies among **Hecke Maaß forms**, $a_m(u)$ is the *m*-th **Fourier coefficient** of u, and t_u is the spectral parameter of u to a sum of Kloosterman sums, plus a continuous contribution from Eisenstein series. Analogue for GSp₄:

- Maaß forms $\longleftrightarrow K_{\infty}$ -fixed functions in cuspidal automorphic representations of GSp_4 ,
- Fourier coefficients ++++ Whittaker coefficients.

Methods of proof:

- Inner product of Poincaré series: Kuznetsov (GL_2), Blomer, Buttcane (GL_3), Man (GSp_4),...

- Relative trace formula: Zagier (unpublished), Knightly-Li.

2 The trace formula

Table of Contents

2 The trace formula

 $\operatorname{GSp}_4 = \{ g \in \operatorname{GL}_4 : \exists \mu(g) \in \operatorname{GL}_1, {^{\top}g}Jg = \mu(g)J \}, \text{ where } J = \left[\begin{smallmatrix} l_2 \\ -l_2 \end{smallmatrix} \right].$

 $GSp_4 = \{g \in GL_4 : \exists \mu(g) \in GL_1, ^{\top}gJg = \mu(g)J\}, \text{ where } J = \begin{bmatrix} l_2 \\ -l_2 \end{bmatrix}.$ Parabolic subgroups $P = N_P M_P$:

• Borel subgroup *B*: $N_B = U = \begin{bmatrix} 1 & 1 & * & * \\ 1 & 1 & * & * \\ 1 & 1 & 1 \end{bmatrix} \cap \operatorname{GSp}_4$, $M_B = A = \begin{bmatrix} * & * & * \\ & * & * \end{bmatrix} \cap \operatorname{GSp}_4 \simeq \operatorname{GL}_1 \times \operatorname{GL}_1 \times \operatorname{GL}_1$,

 $GSp_4 = \{g \in GL_4 : \exists \mu(g) \in GL_1, ^{\top}gJg = \mu(g)J\}, \text{ where } J = \begin{bmatrix} l_2 \\ -l_2 \end{bmatrix}.$ Parabolic subgroups $P = N_P M_P$:

- Borel subgroup *B*: $N_B = U = \begin{bmatrix} 1 & 1 & * & * \\ * & 1 & * & * \\ & 1 & * & 1 \end{bmatrix} \cap \operatorname{GSp}_4$, $M_B = A = \begin{bmatrix} * & * & \\ & * & * \end{bmatrix} \cap \operatorname{GSp}_4 \simeq \operatorname{GL}_1 \times \operatorname{GL}_1 \times \operatorname{GL}_1$,
- Siegel, Klingen subgroups: $B \subset P$, $N_P \subset U$, $M_P \simeq GL_1 \times GL_2$.

 $GSp_4 = \{g \in GL_4 : \exists \mu(g) \in GL_1, {^{\top}g}Jg = \mu(g)J\}, \text{ where } J = \begin{bmatrix} l_2 \\ -l_2 \end{bmatrix}.$ Parabolic subgroups $P = N_P M_P$:

• Borel subgroup *B*: $N_B = U = \begin{bmatrix} 1 & * & * \\ * & 1 & * & * \\ & 1 & * & 1 \\ & & 1 \end{bmatrix} \cap \operatorname{GSp}_4$,

$$M_B = A = \begin{bmatrix} * & * \\ & * & * \end{bmatrix} \cap \operatorname{GSp}_4 \simeq \operatorname{GL}_1 \times \operatorname{GL}_1 \times \operatorname{GL}_1,$$

• Siegel, Klingen subgroups: $B \subset P$, $N_P \subset U$, $M_P \simeq GL_1 \times GL_2$. Some **compact subgroups**:

$$\mathcal{K}_{\infty} \subset \mathrm{GSp}_4(\mathbb{R}) = \{ g \in \mathrm{GSp}_4(\mathbb{R}), g = {^{ op}g^{-1}} \} \cong U(2) imes \{ \pm 1 \}$$

 $GSp_4 = \{g \in GL_4 : \exists \mu(g) \in GL_1, {^{\top}g}Jg = \mu(g)J\}, \text{ where } J = \begin{bmatrix} l_2 \\ -l_2 \end{bmatrix}.$ Parabolic subgroups $P = N_P M_P$:

• Borel subgroup *B*: $N_B = U = \begin{bmatrix} 1 & 1 & * & * \\ * & 1 & * & * \\ & & 1 & 1 \end{bmatrix} \cap \operatorname{GSp}_4$,

$$M_B = A = \begin{bmatrix} * & * & \\ & * & * \end{bmatrix} \cap \operatorname{GSp}_4 \simeq \operatorname{GL}_1 \times \operatorname{GL}_1 \times \operatorname{GL}_1,$$

• Siegel, Klingen subgroups: $B \subset P$, $N_P \subset U$, $M_P \simeq GL_1 \times GL_2$. Some **compact subgroups**:

 $GSp_4 = \{g \in GL_4 : \exists \mu(g) \in GL_1, {^{\top}g}Jg = \mu(g)J\}, \text{ where } J = \begin{bmatrix} l_2 \\ -l_2 \end{bmatrix}.$ Parabolic subgroups $P = N_P M_P$:

• Borel subgroup *B*: $N_B = U = \begin{bmatrix} 1 & 1 & * & * \\ * & 1 & * & 1 \\ & & & 1 \end{bmatrix} \cap \operatorname{GSp}_4$,

$$M_B = A = \begin{bmatrix} * & * & \\ & * & * \end{bmatrix} \cap \operatorname{GSp}_4 \simeq \operatorname{GL}_1 \times \operatorname{GL}_1 \times \operatorname{GL}_1,$$

• Siegel, Klingen subgroups: $B \subset P$, $N_P \subset U$, $M_P \simeq GL_1 \times GL_2$. Some **compact subgroups**:

$$\mathcal{K} = \mathcal{K}_{\infty} \prod_{\rho} \mathcal{K}_{\rho} \subset \mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}}), \ \mathcal{K}(\mathcal{N}) = \mathcal{K}_{\infty} \prod_{\rho} \mathcal{K}_{\rho} \subset \mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}}).$$

Félicien Comtat (Queen Mary University of L

The Langlands spectral decomposition

Consider the representation of $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ on $L^2(\mathbb{R}_{>0}\mathrm{GSp}_4(\mathbb{Q})\backslash\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}}))$ given by $g \cdot \phi = \phi(\cdot g)$. It decomposes as

$$L^{2}(\mathbb{R}_{>0}\mathrm{GSp}_{4}(\mathbb{Q})\backslash\mathrm{GSp}_{4}(\mathbb{A}_{\mathbb{Q}})) = \bigoplus_{\omega} L^{2}(\omega),$$

where ω runs over characters of $\mathbb{R}_{>0}\mathbb{Q}^{\times}\setminus\mathbb{A}_{\mathbb{Q}}^{\times}$ and $L^{2}(\omega)$ is subspace consisting in function ϕ that satisfy $\phi(gz) = \omega(z)\phi(g)$ for all $z \in \mathbb{A}_{\mathbb{Q}}^{\times}$.

The Langlands spectral decomposition

Consider the representation of $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ on $L^2(\mathbb{R}_{>0}\mathrm{GSp}_4(\mathbb{Q})\backslash\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}}))$ given by $g \cdot \phi = \phi(\cdot g)$. It decomposes as

$$L^{2}(\mathbb{R}_{>0}\mathrm{GSp}_{4}(\mathbb{Q})\backslash\mathrm{GSp}_{4}(\mathbb{A}_{\mathbb{Q}})) = \bigoplus_{\omega} L^{2}(\omega),$$

where ω runs over characters of $\mathbb{R}_{>0}\mathbb{Q}^{\times}\setminus\mathbb{A}_{\mathbb{Q}}^{\times}$ and $L^{2}(\omega)$ is subspace consisting in function ϕ that satisfy $\phi(gz) = \omega(z)\phi(g)$ for all $z \in \mathbb{A}_{\mathbb{Q}}^{\times}$. Fix such a character ω . Then we have $L^{2}(\omega) = L^{2}_{disc} \oplus L^{2}_{cont}$, where

- L_{cont}^2 is a direct integral of representations induced from parabolic subgroups by Eisenstein series attached to characters and to automorphic forms on $GL_1 \times GL_2$, respectively.
- L^2_{disc} is a direct sum of irreducible representations π with central character ω .

The Langlands spectral decomposition

Consider the representation of $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ on $L^2(\mathbb{R}_{>0}\mathrm{GSp}_4(\mathbb{Q})\backslash\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}}))$ given by $g \cdot \phi = \phi(\cdot g)$. It decomposes as

$$L^{2}(\mathbb{R}_{>0}\mathrm{GSp}_{4}(\mathbb{Q})\backslash\mathrm{GSp}_{4}(\mathbb{A}_{\mathbb{Q}})) = \bigoplus_{\omega} L^{2}(\omega),$$

where ω runs over characters of $\mathbb{R}_{>0}\mathbb{Q}^{\times}\setminus\mathbb{A}_{\mathbb{Q}}^{\times}$ and $L^{2}(\omega)$ is subspace consisting in function ϕ that satisfy $\phi(gz) = \omega(z)\phi(g)$ for all $z \in \mathbb{A}_{\mathbb{Q}}^{\times}$. Fix such a character ω . Then we have $L^{2}(\omega) = L^{2}_{disc} \oplus L^{2}_{cont}$, where

- L_{cont}^2 is a direct integral of representations induced from parabolic subgroups by Eisenstein series attached to characters and to automorphic forms on $GL_1 \times GL_2$, respectively.
- L^2_{disc} is a direct sum of irreducible representations π with central character ω .

An irreducible automorphic representation π is called **cuspidal** if for every parabolic P every $\phi \in \pi$ satisfies $\int_{N_P(\mathbb{Q}) \setminus N_P(\mathbb{A})} \phi(ux) du = 0$ for all x. Analogue of Maaß forms: K_{∞} -fixed elements of cuspidal representations $\pi_{_{6/27}}$

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The $\psi\text{-Whittaker coefficient of }\phi$ is by definition

$$W_{\phi}(x) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}})} \phi(ux) \overline{\psi(u)} du.$$

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The ψ -Whittaker coefficient of ϕ is by definition

$$W_{\phi}(x) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}})} \phi(ux)\overline{\psi(u)} du.$$

Unlike the case of GL_2 , W_{ϕ} is not always non-zero, even if ϕ is not constant. For instance, Whittaker coefficients of Siegel modular forms are always zero.

If π is an irreducible automorphic representation which contains an automorphic form ϕ with $W_{\phi} \neq 0$, then we say π is **generic**.

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The $\psi\text{-Whittaker coefficient of }\phi$ is by definition

$$W_{\phi}(x) = \int_{U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}})} \phi(ux)\overline{\psi(u)}du.$$

Unlike the case of GL_2 , W_{ϕ} is not always non-zero, even if ϕ is not constant. For instance, Whittaker coefficients of Siegel modular forms are always zero.

If π is an irreducible automorphic representation which contains an automorphic form ϕ with $W_{\phi} \neq 0$, then we say π is **generic**. This is equivalent to say π has a ψ -**Whittaker model**, i.e, can be realized by right translation on a space of functions W with moderate growth and satisfying

$$W(ug) = \psi(u)W(g)$$

for all $u \in U$.

Table of Contents

2 The trace formula

The automorphic kernel

Let $f : \operatorname{GSp}_4(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$ be a smooth function satisfying $f(gz) = \overline{\omega(z)}f(g)$, compactly supported mod centre. Then we have an operator R(f) on $L^2(\omega)$ defined by

$$(R(f)\phi)(x) = \int_{\overline{G}(\mathbb{A})} f(y)\phi(xy)dy = \int_{\overline{G}(\mathbb{Q})\setminus\overline{G}(\mathbb{A})} K_f(x,y)\phi(y)dy,$$

where $K_f(x, y) = \sum_{\gamma \in \overline{G}(\mathbb{Q})} f(x^{-1}\gamma y).$

The automorphic kernel

Let $f : \operatorname{GSp}_4(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$ be a smooth function satisfying $f(gz) = \overline{\omega(z)}f(g)$, compactly supported mod centre. Then we have an operator R(f) on $L^2(\omega)$ defined by

$$(R(f)\phi)(x) = \int_{\overline{G}(\mathbb{A})} f(y)\phi(xy)dy = \int_{\overline{G}(\mathbb{Q})\setminus\overline{G}(\mathbb{A})} K_f(x,y)\phi(y)dy,$$

where $K_f(x, y) = \sum_{\gamma \in \overline{G}(\mathbb{Q})} f(x^{-1}\gamma y)$. Informally, we have $(R(f)\phi)(x) = \langle K_f(x, \cdot), \overline{\phi} \rangle$. So if \mathscr{B} is an orthonormal basis of L^2_{disc} we expect

$$egin{aligned} &\mathcal{K}_f(x,y) = \sum_{\phi\in\mathscr{B}} \langle \mathcal{K}_f(x,\cdot),\overline{\phi}
angle \overline{\phi}(y) + \mathit{cont.} \ &= \sum_{\phi\in\mathscr{B}} (R(f)\phi)(x)\overline{\phi}(y) + \mathit{cont.} \end{aligned}$$

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{\nu}$. If f also factors, then the operator R(f) induces an operator $\pi_{\nu}(f_{\nu})$ on the space of each representation π_{ν} .

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{\nu}$. If f also factors, then the operator R(f) induces an operator $\pi_{\nu}(f_{\nu})$ on the space of each representation π_{ν} .

If f is left and right K_{∞} -invariant, then $\pi_{\infty}(f_{\infty})$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \le \infty} \pi_{\nu}$. If f also factors, then the operator R(f) induces an operator $\pi_{\nu}(f_{\nu})$ on the space of each representation π_{ν} .

If f is left and right K_{∞} -invariant, then $\pi_{\infty}(f_{\infty})$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.

But $\pi^{K_{\infty}}$ has dimension at most one, say $\pi^{K_{\infty}} = \mathbb{C} \cdot \phi_{\infty}$, so $\pi_{\infty}(f_{\infty}) = \lambda_{f,\pi_{\infty}}\phi_{\infty}$.

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{\nu}$. If f also factors, then the operator R(f) induces an operator $\pi_{\nu}(f_{\nu})$ on the space of each representation π_{ν} .

If f is left and right K_{∞} -invariant, then $\pi_{\infty}(f_{\infty})$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.

But $\pi^{K_{\infty}}$ has dimension at most one, say $\pi^{K_{\infty}} = \mathbb{C} \cdot \phi_{\infty}$, so $\pi_{\infty}(f_{\infty}) = \lambda_{f,\pi_{\infty}}\phi_{\infty}$.

Similarly it is possible to arrange the choice of f so that each $\pi_p^{K_p(N)}$ has a basis of eigenvectors of $\pi_p(f_p)$, and $\pi_p(f_p)$ annihilate the complement of this space.

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{\nu}$. If f also factors, then the operator R(f) induces an operator $\pi_{\nu}(f_{\nu})$ on the space of each representation π_{ν} .

If f is left and right K_{∞} -invariant, then $\pi_{\infty}(f_{\infty})$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.

But $\pi^{K_{\infty}}$ has dimension at most one, say $\pi^{K_{\infty}} = \mathbb{C} \cdot \phi_{\infty}$, so $\pi_{\infty}(f_{\infty}) = \lambda_{f,\pi_{\infty}}\phi_{\infty}$.

Similarly it is possible to arrange the choice of f so that each $\pi_p^{K_p(N)}$ has a basis of eigenvectors of $\pi_p(f_p)$, and $\pi_p(f_p)$ annihilate the complement of this space.

For this choice of f, taking $\mathscr{B}_{\pi}(N)$ the basis of $\pi^{K(N)}$ obtained by the tensor product of the local basis, we obtain

$$\mathcal{K}_f(x,y) = \sum_{\pi} \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_f(\phi) \phi(x) \overline{\phi}(y) + cont.$$

The spectral side

0

Integrating previous expression against $\overline{\psi}(x)\psi(y)$ over $(U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}}))^2$ we obtain

$$\int_{(U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}}))^2} K_f(xt_1, yt_2)\overline{\psi(x)}\psi(y)dxdy = \sum_{\pi} \sum_{\phi\in\mathscr{B}_{\pi}(N)} \lambda_f(\phi)W_{\phi}(t_1)\overline{W_{\phi}}(t_2) + cont.$$

On the RHS, only representations π which are generic and have a non-zero K(N)-fixed vector contribute.

The spectral side

r

Integrating previous expression against $\overline{\psi}(x)\psi(y)$ over $(U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}}))^2$ we obtain

$$\int_{(U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}}))^2} K_f(xt_1, yt_2) \overline{\psi(x)} \psi(y) dx dy = \sum_{\pi} \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_f(\phi) W_{\phi}(t_1) \overline{W_{\phi}}(t_2) + cont.$$

On the RHS, only representations π which are generic and have a non-zero K(N)-fixed vector contribute. It is known that the Archimedean component must then be a principal series representation, i.e, induced from a character $a \mapsto a^{\rho+\nu}$ of A.

The spherical transform

In the standard induced model, the K_{∞} -fixed vector ϕ_{∞} is given by $\phi_{\infty}(nak) = a^{\rho+\nu}$, and hence the eigenvalue $\lambda_{f,\pi_{\infty}}$ is given by

$$egin{aligned} \lambda_{f,\pi_\infty} &= (\pi_\infty(f_\infty)\phi_\infty)(1) = \int_{\overline{G}(\mathbb{R})} f_\infty(g)\pi_\infty(g)\phi(1)dg \ &= \int_{U(\mathbb{R})} \int_{\overline{A}(\mathbb{R})} f(na)a^{
ho+
u} dadn \doteq ilde{f}(
u), \end{aligned}$$

where \tilde{f} is the **spherical transform** of f_{∞} .

The spherical transform

In the standard induced model, the K_{∞} -fixed vector ϕ_{∞} is given by $\phi_{\infty}(nak) = a^{\rho+\nu}$, and hence the eigenvalue $\lambda_{f,\pi_{\infty}}$ is given by

$$egin{aligned} \lambda_{f,\pi_\infty} &= (\pi_\infty(f_\infty)\phi_\infty)(1) = \int_{\overline{G}(\mathbb{R})} f_\infty(g)\pi_\infty(g)\phi(1)dg \ &= \int_{U(\mathbb{R})} \int_{\overline{\mathcal{A}}(\mathbb{R})} f(na)a^{
ho+
u} dadn \doteq ilde{f}(
u), \end{aligned}$$

where \tilde{f} is the **spherical transform** of f_{∞} . So the spectral side becomes

$$\sum_{\pi} \tilde{f}(\nu_{\pi}) \sum_{\phi \in \mathscr{B}_{\pi}(\mathsf{N})} \lambda_{f_{fin}}(\phi) W_{\phi}(t_1) \overline{W_{\phi}}(t_2) + cont.$$

where $\nu_{\pi} \in Lie(\overline{A})^*$ is the spectral parameter of π_{∞} .

The spherical transform

In the standard induced model, the K_{∞} -fixed vector ϕ_{∞} is given by $\phi_{\infty}(nak) = a^{\rho+\nu}$, and hence the eigenvalue $\lambda_{f,\pi_{\infty}}$ is given by

$$egin{aligned} \lambda_{f,\pi_\infty} &= (\pi_\infty(f_\infty)\phi_\infty)(1) = \int_{\overline{G}(\mathbb{R})} f_\infty(g)\pi_\infty(g)\phi(1)dg \ &= \int_{U(\mathbb{R})} \int_{\overline{\mathcal{A}}(\mathbb{R})} f(na)a^{
ho+
u} dadn \doteq ilde{f}(
u), \end{aligned}$$

where \tilde{f} is the **spherical transform** of f_{∞} . So the spectral side becomes

$$\sum_{\pi} \tilde{f}(\nu_{\pi}) \sum_{\phi \in \mathscr{B}_{\pi}(\mathsf{N})} \lambda_{f_{fin}}(\phi) W_{\phi}(t_1) \overline{W_{\phi}}(t_2) + cont.$$

where $\nu_{\pi} \in Lie(\overline{A})^*$ is the **spectral parameter** of π_{∞} . By Harish-Chandra Paley-Wiener's theorem, it is known that, choosing appropriately the test function f_{∞} , we can produce any Paley-Wiener test function $h = \tilde{f}$ on the spectral side.

Félicien Comtat (Queen Mary University of L $\,$ The Kuznetsov formula for GSp_4

The geometric side

From now on, we assume $t_1, t_2 \in A(\mathbb{Q})$. By definition of the kernel, the integral we considered may be written as

$$\sum_{\gamma \in \overline{G}(\mathbb{Q})} \int_{(U(\mathbb{Q}) \setminus U(\mathbb{A}_{\mathbb{Q}}))^2} f(t_1^{-1} x^{-1} \gamma y t_2) \overline{\psi(x)} \psi(y) dx dy = \sum_{\gamma \in U(\mathbb{Q}) \setminus \overline{G}(\mathbb{Q}) / U(\mathbb{Q})} I_{\gamma}(f),$$

where

$$\begin{split} I_{\gamma}(f) &= \int_{H_{\gamma}(\mathbb{Q}) \setminus U(\mathbb{A}_{\mathbb{Q}})^2} f(x^{-1}t_1^{-1}\gamma t_2 y) \overline{\psi(t_1 x t_1^{-1})} \psi(t_2 y t_2^{-1}) dx dy, \\ H_{\gamma} &= \{(x, y) \in U^2, x^{-1}\gamma y = \gamma\}. \end{split}$$

The geometric side

From now on, we assume $t_1, t_2 \in A(\mathbb{Q})$. By definition of the kernel, the integral we considered may be written as

$$\sum_{\gamma \in \overline{G}(\mathbb{Q})} \int_{(U(\mathbb{Q}) \setminus U(\mathbb{A}_{\mathbb{Q}}))^2} f(t_1^{-1} x^{-1} \gamma y t_2) \overline{\psi(x)} \psi(y) dx dy = \sum_{\gamma \in U(\mathbb{Q}) \setminus \overline{G}(\mathbb{Q}) / U(\mathbb{Q})} I_{\gamma}(f),$$

where

$$I_{\gamma}(f) = \int_{H_{\gamma}(\mathbb{Q}) \setminus U(\mathbb{A}_{\mathbb{Q}})^2} f(x^{-1}t_1^{-1}\gamma t_2 y) \overline{\psi(t_1 x t_1^{-1})} \psi(t_2 y t_2^{-1}) dx dy,$$

 $H_{\gamma} = \{(x, y) \in U^2, x^{-1}\gamma y = \gamma\}$. Using the Bruhat decomposition, $U(\mathbb{Q}) \setminus \overline{G}(\mathbb{Q}) / U(\mathbb{Q})$ consists in elements $\sigma\delta$, where σ ranges over the Weyl group, and δ over $A(\mathbb{Q})$.

Non-Archimedean part of the geometric side

By the bi-K(N)-invariance property of f, the non-Archimedean part of $I_{\sigma\delta}$ reduces to a finite sum $Kloos_{\sigma}(\delta, f_{fin}, N)$. For simplicity, assume now that f_{fin} is "trivial".

Non-Archimedean part of the geometric side

By the bi-K(N)-invariance property of f, the non-Archimedean part of $I_{\sigma\delta}$ reduces to a finite sum $Kloos_{\sigma}(\delta, f_{fin}, N)$. For simplicity, assume now that f_{fin} is "trivial".

For $\sigma = 1$, only $\delta = 1$ has a non-zero contribution, which is roughly $\delta(t_1, t_2)$.

Non-Archimedean part of the geometric side

By the bi-K(N)-invariance property of f, the non-Archimedean part of $I_{\sigma\delta}$ reduces to a finite sum $Kloos_{\sigma}(\delta, f_{fin}, N)$. For simplicity, assume now that f_{fin} is "trivial".

For $\sigma = 1$, only $\delta = 1$ has a non-zero contribution, which is roughly $\delta(t_1, t_2)$.

Among the other seven elements from the Weyl group, only the longest three give a non-zero contribution, with various divisibility conditions on the entries of δ .
Non-Archimedean part of the geometric side

By the bi-K(N)-invariance property of f, the non-Archimedean part of $I_{\sigma\delta}$ reduces to a finite sum $Kloos_{\sigma}(\delta, f_{fin}, N)$. For simplicity, assume now that f_{fin} is "trivial".

For $\sigma = 1$, only $\delta = 1$ has a non-zero contribution, which is roughly $\delta(t_1, t_2)$.

Among the other seven elements from the Weyl group, only the longest three give a non-zero contribution, with various divisibility conditions on the entries of δ .

So the geometric side becomes

$$egin{aligned} &I_{1,\infty}(f_\infty)\delta(t_1,t_2)+\sum_{\delta}I_{\sigma_1\delta,\infty}(f_\infty) extsf{Kloos}_{\sigma_1}(\delta, extsf{N})\ &+\sum_{\delta}I_{\sigma_2\delta,\infty}(f_\infty) extsf{Kloos}_{\sigma_2}(\delta, extsf{N})\ &+\sum_{\delta}I_{\sigma_l\delta,\infty}(f_\infty) extsf{Kloos}_{\sigma_l}(\delta, extsf{N}) \end{aligned}$$

14/27 14/27

Archimedean part of the geometric side

After a change of variable, the Archimedean part of $I_{\sigma\delta}(f)$ is given by

$$\int_{U_{\sigma}(\mathbb{R})\setminus U(\mathbb{R})}\int_{U(\mathbb{R})}f(u_1^{-1}t_1^{-1}\sigma\delta t_2u_2)\overline{\psi(t_1u_1^{-1}t_1^{-1})}\psi(t_2u_2t_2^{-1})du_1du_2.$$

Archimedean part of the geometric side

After a change of variable, the Archimedean part of $I_{\sigma\delta}(f)$ is given by

$$\int_{U_{\sigma}(\mathbb{R})\setminus U(\mathbb{R})}\int_{U(\mathbb{R})}f(u_1^{-1}t_1^{-1}\sigma\delta t_2u_2)\overline{\psi(t_1u_1^{-1}t_1^{-1})}\psi(t_2u_2t_2^{-1})du_1du_2.$$

Using Wallach's Whittaker inversion, we can show

$$\int_{U(\mathbb{R})} f(tug)\overline{\psi}(u)du = \int_{Lie(\overline{A})^*} \tilde{f}(\nu)W(-\nu,g,\psi)W(\nu,t^{-1},\overline{\psi})dspec(\nu),$$

where $W(-\nu, \cdot, \psi)$ is the ψ -Whittakher function with spectral parameter $-\nu$ = the K_{∞} -fixed vector in the Whittakher model of the principal series representation with spectral parameter $-\nu$.

Archimedean part of the geometric side

After a change of variable, the Archimedean part of $I_{\sigma\delta}(f)$ is given by

$$\int_{U_{\sigma}(\mathbb{R})\setminus U(\mathbb{R})}\int_{U(\mathbb{R})}f(u_1^{-1}t_1^{-1}\sigma\delta t_2u_2)\overline{\psi(t_1u_1^{-1}t_1^{-1})}\psi(t_2u_2t_2^{-1})du_1du_2.$$

Using Wallach's Whittaker inversion, we can show

$$\int_{U(\mathbb{R})} f(tug)\overline{\psi}(u)du = \int_{Lie(\overline{A})^*} \tilde{f}(\nu)W(-\nu,g,\psi)W(\nu,t^{-1},\overline{\psi})dspec(\nu),$$

where $W(-\nu, \cdot, \psi)$ is the ψ -Whittakher function with spectral parameter $-\nu =$ the K_{∞} -fixed vector in the Whittakher model of the principal series representation with spectral parameter $-\nu$. Under some conjectural interchange of integral, the whole integral would become

$$\int_{Lie(\overline{A})^*} \tilde{f}(\nu) W(-\nu, t_2, \psi) W(\nu, t_1, \overline{\psi}) K_{\sigma}(-i\nu, \delta) dspec(\nu),$$

where K_{σ} is a generalised Bessel function.

Table of Contents

2 The trace formula

Fix a prime p and let π_p be an irreducible admissible representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ which has a K_p -fixed vector and trivial central character. It is known that π_p is the unique spherical subquotient of a representation induced from a character of the form $\begin{bmatrix} x & y \\ & tx^{-1} \\ & ty^{-1} \end{bmatrix} \mapsto \sigma(t)\chi_1(x)\chi_2(y)$ for some unramified characters χ_1, χ_2, σ satisfying $\sigma^2\chi_1\chi_2 = 1$.

Fix a prime p and let π_p be an irreducible admissible representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ which has a K_p -fixed vector and trivial central character. It is known that π_p is the unique spherical subquotient of a representation induced from a character of the form $\begin{bmatrix} x & y \\ & tx^{-1} \end{bmatrix} \mapsto \sigma(t)\chi_1(x)\chi_2(y)$ for some unramified characters χ_1, χ_2, σ satisfying $\sigma^2\chi_1\chi_2 = 1$. Unramified characters of \mathbb{Q}_p^{\times} are uniquely determined by their value at p, hence π_p is completely determined by the pair $(\alpha, \beta) = (\sigma(p), \sigma(p)\chi_1(p))$.

Fix a prime p and let π_p be an irreducible admissible representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ which has a K_p -fixed vector and trivial central character. It is known that π_p is the unique spherical subquotient of a representation induced from a character of the form $\begin{bmatrix} x & y \\ & tx^{-1} \\ & ty^{-1} \end{bmatrix} \mapsto \sigma(t)\chi_1(x)\chi_2(y)$ for some unramified characters χ_1, χ_2, σ satisfying $\sigma^2 \chi_1 \chi_2 = 1$. Unramified characters of \mathbb{Q}_p^{\times} are uniquely determined by their value at p, hence π_p is completely determined by the pair $(\alpha, \beta) = (\sigma(p), \sigma(p)\chi_1(p))$. Conversely, the pair (α, β) is uniquely determined by π_p , up to the action of the Weyl group. It is called he **Satake parameters** of π_p .

Fix a prime p and let π_p be an irreducible admissible representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ which has a K_p -fixed vector and trivial central character. It is known that π_p is the unique spherical subquotient of a representation

induced from a character of the form $\begin{bmatrix} x & y \\ & tx^{-1} \\ & ty^{-1} \end{bmatrix} \mapsto \sigma(t)\chi_1(x)\chi_2(y)$

for some unramified characters χ_1, χ_2, σ satisfying $\sigma^2 \chi_1 \chi_2 = 1$. Unramified characters of \mathbb{Q}_p^{\times} are uniquely determined by their value at p, hence π_p is completely determined by the pair $(\alpha, \beta) = (\sigma(p), \sigma(p)\chi_1(p))$. Conversely, the pair (α, β) is uniquely determined by π_p , up to the action of the Weyl group. It is called he **Satake parameters** of π_p . π_p is **tempered** if and only if it Satake parameters $(\alpha, \beta) \in \mathbb{S}^1 \times \mathbb{S}^1$. It is believed that if π_p is the local constituent of the automorphic representation attached to a GSp₄ Maaß form, then π_p is tempered (Generalised Ramanujan Conjecture).

Equidistribution of Satake parameters

Let $\mathcal{F}(N) = \bigcup_{\pi} \mathscr{B}_{\pi}(N)$, orthonormal basis of the space of K(N)-fixed Maaß forms on $GSp(\mathbb{A})$.

Equidistribution of Satake parameters

Let $\mathcal{F}(N) = \bigcup_{\pi} \mathscr{B}_{\pi}(N)$, orthonormal basis of the space of K(N)-fixed Maaß forms on $\mathrm{GSp}(\mathbb{A})$. Fix a prime p and for $\phi \in \pi$ denote by $(\alpha_{p,\phi}, \beta_{p,\phi})$ the Satake parameters of π_p . Also fix the test function $h = \tilde{f}$ in the Kuznetsov formula. Define $w(\phi) = h(\nu_{\phi})|W_{\phi}(1)|^2$. I want to show that the set

$$\{(\alpha_{\boldsymbol{p},\phi},\beta_{\boldsymbol{p},\phi}):\phi\in\mathcal{F}(N)\}\subset\mathbb{C}^2/W,$$

weighted by $w(\phi)$, equidistributes with respect to the GSp₄ Sato-Tate measure μ_{ST} as N tends to infinity among integers coprimes to p.

Equidistribution of Satake parameters

Let $\mathcal{F}(N) = \bigcup_{\pi} \mathscr{B}_{\pi}(N)$, orthonormal basis of the space of K(N)-fixed Maaß forms on $\mathrm{GSp}(\mathbb{A})$. Fix a prime p and for $\phi \in \pi$ denote by $(\alpha_{p,\phi}, \beta_{p,\phi})$ the Satake parameters of π_p . Also fix the test function $h = \tilde{f}$ in the Kuznetsov formula. Define $w(\phi) = h(\nu_{\phi})|W_{\phi}(1)|^2$. I want to show that the set

$$\{(\alpha_{\boldsymbol{p},\phi},\beta_{\boldsymbol{p},\phi}):\phi\in\mathcal{F}(N)\}\subset\mathbb{C}^2/W,$$

weighted by $w(\phi)$, equidistributes with respect to the GSp_4 Sato-Tate measure μ_{ST} as N tends to infinity among integers coprimes to p. This means that for any continuous bounded W-invariant function f on \mathbb{C}^2 we have

$$\lim_{N\to\infty}\frac{\sum_{\phi\in\mathcal{F}(N)}w(\phi)f(\alpha_{p,\phi},\beta_{p,\phi})}{\sum_{\phi\in\mathcal{F}(N)}w(\phi)}=\int_{\mathbb{C}^2/W}fd\mu_{ST}.$$

This is consistent with the Generalised Ramanujan Conjecture.

Taking
$$t_1 = 1$$
 and $t_2 = \begin{bmatrix} p^i & p^j & p^{k-i} \\ p^k & p^{k-j} \end{bmatrix}$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i,j,k}(\alpha_{p,\phi}, \beta_{p,\phi})$$
with $f_{i,j,k}(\alpha, \beta) = W_{\alpha,\beta} \left(\begin{bmatrix} p^i & p^j & p^{k-j} \\ p^{k-j} & p^{k-j} \end{bmatrix} \right)$, where $W_{\alpha,\beta}$ is the (normalized) Whittaker function for the representation of $GSp_4(\mathbb{Q}_p)$ with

Satake parameters (α, β) .

Taking
$$t_1 = 1$$
 and $t_2 = \begin{bmatrix} p^i & p^j & p^{k-i} \\ & p^{k-i} & p^{k-j} \end{bmatrix}$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i,j,k}(\alpha_{p,\phi}, \beta_{p,\phi})$$
with $f_{i,j,k}(\alpha, \beta) = W_{\alpha,\beta} \left(\begin{bmatrix} p^i & p^j & p^{k-i} & p^{k-j} \\ & p^{k-i} & p^{k-j} \end{bmatrix} \right)$, where $W_{\alpha,\beta}$ is the (normalized) Whittaker function for the representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ with Satake parameters (α, β) .

The identity contribution in the geometric side is $\delta_{(i,j,k)=(0,0,0)}$.

Taking
$$t_1 = 1$$
 and $t_2 = \begin{bmatrix} p^i & p^j & p^{k-i} \\ p^k & p^{k-i} & p^{k-j} \end{bmatrix}$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i,j,k}(\alpha_{p,\phi}, \beta_{p,\phi})$$
with $f_{i,j,k}(\alpha, \beta) = W_{\alpha,\beta} \left(\begin{bmatrix} p^i & p^j & p^{k-i} & p^{k-j} \\ p^{k-i} & p^{k-j} & p^{k-j} \end{bmatrix} \right)$, where $W_{\alpha,\beta}$ is the (normalized) Whittaker function for the representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ with

Satake parameters (α, β) .

The identity contribution in the geometric side is $\delta_{(i,j,k)=(0,0,0)}$.

Moreover, $f_{0,0,0} = 1$, and, using the **Casselman-Shalika formula**, one can show that the various $f_{i,j,k}$ are orthogonal for the Sato-Tate measure, and span the space of continuous functions on $(\mathbb{S}^1 \times \mathbb{S}^1)/W$.

Taking
$$t_1 = 1$$
 and $t_2 = \begin{bmatrix} p^i & p^j & p^{k-i} \\ p^k & p^{k-j} \end{bmatrix}$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i,j,k}(\alpha_{p,\phi}, \beta_{p,\phi})$$
with $f_{i,j,k}(\alpha, \beta) = W_{\alpha,\beta} \left(\begin{bmatrix} p^i & p^j & \\ p^{k-i} & p^{k-j} \end{bmatrix} \right)$, where $W_{\alpha,\beta}$ is the (normalized) Whittaker function for the representation of $\operatorname{GSp}_4(\mathbb{Q}_p)$ with

Satake parameters (α, β) .

The identity contribution in the geometric side is $\delta_{(i,j,k)=(0,0,0)}$.

Moreover, $f_{0,0,0} = 1$, and, using the **Casselman-Shalika formula**, one can show that the various $f_{i,j,k}$ are orthogonal for the Sato-Tate measure, and span the space of continuous functions on $(\mathbb{S}^1 \times \mathbb{S}^1)/W$. So only remains to bound the continuous contribution and the sum of Kloosterman sums.^{19/27} fier Comtat (Queen Mary University of U) The Kuznetsov formula for GSp. March 29th 2022 19/27

The continuous contributions

Formally similar to the cuspidal contribution with following modifications

$$\sum_{\pi \subset L^{2}_{disc}(\mathrm{GSp}_{4})} \longleftrightarrow \int_{\nu \in i \mathrm{Lie}(\overline{A_{P}})^{*}} \sum_{\pi \subset L^{2}_{disc}(M_{P})} \phi \in \pi \iff E(\cdot, u, \nu) \in \mathrm{Ind}_{P}^{\mathrm{GSp}_{4}}(1_{N_{P}} \otimes \exp(\nu) \otimes \pi),$$

where *u* ranges over an ON basis \mathscr{B}_{π} of the space $\mathscr{H}_{P}(\pi)$ of functions st

- *u* is left-invariant by $N_P(\mathbb{A})$,
- for all $k \in \mathrm{GSp}_4(\mathbb{A})$ we have $u_k \doteq [m \mapsto u(mk)] \in \pi$
- u is right-invariant by K(N),

The continuous contributions

Formally similar to the cuspidal contribution with following modifications

$$\sum_{\pi \subset L^{2}_{disc}(\mathrm{GSp}_{4})} \longleftrightarrow \int_{\nu \in i \mathrm{Lie}(\overline{A_{P}})^{*}} \sum_{\pi \subset L^{2}_{disc}(M_{P})} \phi \in \pi \iff E(\cdot, u, \nu) \in \mathrm{Ind}_{P}^{\mathrm{GSp}_{4}}(1_{N_{P}} \otimes \exp(\nu) \otimes \pi),$$

where *u* ranges over an ON basis \mathscr{B}_{π} of the space $\mathscr{H}_{P}(\pi)$ of functions st

- *u* is left-invariant by $N_P(\mathbb{A})$,
- for all $k \in \mathrm{GSp}_4(\mathbb{A})$ we have $u_k \doteq [m \mapsto u(mk)] \in \pi$
- u is right-invariant by K(N), and

$$E(x, u, \nu) = \sum_{\gamma \in P(\mathbb{Q}) \setminus \mathrm{GSp}_4(\mathbb{Q})} u(\gamma x) \exp((\nu + \rho_P)(H_P(\gamma x))).$$

The continuous contributions

Formally similar to the cuspidal contribution with following modifications

$$\sum_{\pi \subset L^{2}_{disc}(\mathrm{GSp}_{4})} \longleftrightarrow \int_{\nu \in i \mathrm{Lie}(\overline{A_{P}})^{*}} \sum_{\pi \subset L^{2}_{disc}(M_{P})} \phi \in \pi \iff E(\cdot, u, \nu) \in \mathrm{Ind}_{P}^{\mathrm{GSp}_{4}}(1_{N_{P}} \otimes \exp(\nu) \otimes \pi),$$

where u ranges over an ON basis \mathscr{B}_{π} of the space $\mathscr{H}_{P}(\pi)$ of functions st

- *u* is left-invariant by $N_P(\mathbb{A})$,
- for all $k \in \mathrm{GSp}_4(\mathbb{A})$ we have $u_k \doteq [m \mapsto u(mk)] \in \pi$
- u is right-invariant by K(N), and

$$E(x, u, \nu) = \sum_{\gamma \in P(\mathbb{Q}) \setminus \mathrm{GSp}_4(\mathbb{Q})} u(\gamma x) \exp((\nu + \rho_P)(H_P(\gamma x))).$$

For all $\nu \in Lie(\overline{A_P})^*$ we want to bound

$$\sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_{\pi}) \sum_{u \in \mathscr{B}_{\pi}} W_{E(\cdot, u, \nu)}(t_1) \overline{W_{E(\cdot, u, \nu)}(t_2)}.$$

Félicien Comtat (Queen Mary University of L

By the lwasawa decomposition, u is completely determined by $(u_k)_{k \in K}$.

By the Iwasawa decomposition, u is completely determined by $(u_k)_{k \in K}$. The right-K(N)-invariance implies that for all $\gamma \in K(N)$ we have

 $u_{k\gamma} = u_k.$

By the Iwasawa decomposition, u is completely determined by $(u_k)_{k \in K}$. The right- $\mathcal{K}(N)$ -invariance implies that for all $\gamma \in \mathcal{K}(N)$ we have

$$u_{k\gamma} = u_k$$

Note that if $\gamma \in P(\mathbb{A}) \cap K$ then we have

$$u_{\gamma k}(m) = u(m\gamma k) = [\pi(\gamma)u_k](m).$$

By the Iwasawa decomposition, u is completely determined by $(u_k)_{k \in K}$. The right-K(N)-invariance implies that for all $\gamma \in K(N)$ we have

$$u_{k\gamma} = u_k$$

Note that if $\gamma \in P(\mathbb{A}) \cap K$ then we have

$$u_{\gamma k}(m) = u(m\gamma k) = [\pi(\gamma)u_k](m).$$

In particular, if $\gamma k \cdot K(N) = k \cdot K(N)$ then $\pi(\gamma)u_k = u_k$.

By the Iwasawa decomposition, u is completely determined by $(u_k)_{k \in K}$. The right-K(N)-invariance implies that for all $\gamma \in K(N)$ we have

$$u_{k\gamma} = u_k$$

Note that if $\gamma \in P(\mathbb{A}) \cap K$ then we have

$$u_{\gamma k}(m) = u(m\gamma k) = [\pi(\gamma)u_k](m).$$

In particular, if $\gamma k \cdot K(N) = k \cdot K(N)$ then $\pi(\gamma)u_k = u_k$. Hence

$$\mathscr{H}_{P}(\pi) \simeq \bigoplus_{k \in (P(\mathbb{A}) \cap K) \setminus K/K(N)} V_{P}(k,\pi)$$

 $u \mapsto (u_{k})$

where $V_P(k, \pi)$ is the (finite dimensional) space of vectors in π that are invariant by $\Gamma_{P,k}(N) \doteq Stab_{P(\mathbb{A})\cap K}(k \cdot K(N))$.

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$\langle u, v \rangle = \int_{\mathcal{K}} \int_{\mathcal{M}_{\mathcal{P}}(\mathbb{Q})\mathcal{A}_{\mathcal{P}}(\mathbb{R}) \setminus \mathcal{M}_{\mathcal{P}}(\mathbb{A})} u(mk) \overline{v}(mk) dm dk$$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$\langle u, v \rangle = \int_{\mathcal{K}} \int_{M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A})} u(mk)\overline{v}(mk) dm dk$$

$$= \sum_{k \in \mathcal{K}/\mathcal{K}(N)} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))}$$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$\begin{split} \langle u, v \rangle &= \int_{\mathcal{K}} \int_{M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A})} u(mk)\overline{v}(mk)dmdk \\ &= \sum_{k \in \mathcal{K}/\mathcal{K}(N)} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))} \\ &= \sum_{k \in (P(\mathbb{A}) \cap \mathcal{K}) \setminus \mathcal{K}/\mathcal{K}(N)} \# \mathcal{O}_{k} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))}, \end{split}$$

where \mathcal{O}_k is the $P(\mathbb{A}) \cap K$ -orbit of $k \cdot K(N)$ inside K/K(N).

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$\begin{aligned} \langle u, v \rangle &= \int_{K} \int_{M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A})} u(mk) \overline{v}(mk) dm dk \\ &= \sum_{k \in K/K(N)} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))} \\ &= \sum_{k \in (P(\mathbb{A}) \cap K) \setminus K/K(N)} \# \mathcal{O}_{k} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))}, \end{aligned}$$

where \mathcal{O}_k is the $P(\mathbb{A}) \cap K$ -orbit of $k \cdot K(N)$ inside K/K(N). Fix an orthonormal basis $(u_{k,j})_j$ of $V_P(k,\pi)$. Consider an orthonormal basis $\mathscr{B}_{\pi} = (u^{(k,i)})_{(k,i)}$ of $\mathscr{H}_P(\pi)$.

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$\begin{split} \langle u, v \rangle &= \int_{K} \int_{M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A})} u(mk) \overline{v}(mk) dm dk \\ &= \sum_{k \in K/K(N)} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))} \\ &= \sum_{k \in (P(\mathbb{A}) \cap K) \setminus K/K(N)} \# \mathcal{O}_{k} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))}, \end{split}$$

where \mathcal{O}_k is the $P(\mathbb{A}) \cap K$ -orbit of $k \cdot K(N)$ inside K/K(N). Fix an orthonormal basis $(u_{k,j})_j$ of $V_P(k,\pi)$. Consider an orthonormal basis $\mathscr{B}_{\pi} = (u^{(k,i)})_{(k,i)}$ of $\mathscr{H}_P(\pi)$. Then for all $h \in (P \cap K) \setminus K/K(N)$

$$u_h^{(k,i)} = \frac{1}{\sqrt{\#\mathcal{O}_h}} \sum_j c_{h,j}^{(k,i)} u_{h,j},$$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$\begin{split} \langle u, v \rangle &= \int_{K} \int_{M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A})} u(mk) \overline{v}(mk) dm dk \\ &= \sum_{k \in K/K(N)} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))} \\ &= \sum_{k \in (P(\mathbb{A}) \cap K) \setminus K/K(N)} \# \mathcal{O}_{k} \langle u_{k}, v_{k} \rangle_{L^{2}(M_{P}(\mathbb{Q})A_{P}(\mathbb{R}) \setminus M_{P}(\mathbb{A}))}, \end{split}$$

where \mathcal{O}_k is the $P(\mathbb{A}) \cap K$ -orbit of $k \cdot K(N)$ inside K/K(N). Fix an orthonormal basis $(u_{k,j})_j$ of $V_P(k,\pi)$. Consider an orthonormal basis $\mathscr{B}_{\pi} = (u^{(k,i)})_{(k,i)}$ of $\mathscr{H}_P(\pi)$. Then for all $h \in (P \cap K) \setminus K/K(N)$

$$u_{h}^{(k,i)} = \frac{1}{\sqrt{\#\mathcal{O}_{h}}} \sum_{j} c_{h,j}^{(k,i)} u_{h,j}, \text{ with } \sum_{h,j} c_{h,j}^{(k_{1},i_{1})} \overline{c_{h,j}^{(k_{2},i_{2})}} = \delta_{(k_{1},i_{1})=(k_{2},i_{2})}.$$

We want to bound

$$\sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_{\pi}) \sum_{k,i} W_{E(\cdot, u^{(k,i)}, \nu)}(t_1) \overline{W_{E(\cdot, u^{(k,i)}, \nu)}(t_2)}.$$

We want to bound

$$\sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_{\pi}) \sum_{k,i} W_{E(\cdot, u^{(k,i)}, \nu)}(t_1) \overline{W_{E(\cdot, u^{(k,i)}, \nu)}(t_2)}.$$

We bound

$$|W_{E(\cdot,u,
u)}(t)| \leq ||u||_{\infty} \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(ut,1,
u) du$$

We want to bound

$$\sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_{\pi}) \sum_{k,i} W_{E(\cdot, u^{(k,i)}, \nu)}(t_1) \overline{W_{E(\cdot, u^{(k,i)}, \nu)}(t_2)}.$$

We bound

$$|W_{\mathsf{E}(\cdot,u,
u)}(t)| \leq ||u||_{\infty} \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} \mathsf{E}(ut,1,
u) du$$

and $||u||_{\infty} = \max_{h} \sup_{m} |u(mh)|$

We want to bound

$$\sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_{\pi}) \sum_{k,i} W_{E(\cdot, u^{(k,i)}, \nu)}(t_1) \overline{W_{E(\cdot, u^{(k,i)}, \nu)}(t_2)}.$$

We bound

$$|W_{E(\cdot,u,
u)}(t)| \leq ||u||_{\infty} \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(ut,1,
u) du$$

and $||u||_{\infty} = \max_{h} \sup_{m} |u(mh)| = \max_{h} ||u_{h}||_{\infty}$.

We want to bound

$$\sum_{\pi \subset L^2_{disc}(M_{\mathcal{P}})} h(\nu + \nu_{\pi}) \sum_{k,i} W_{\mathsf{E}(\cdot, u^{(k,i)}, \nu)}(t_1) \overline{W_{\mathsf{E}(\cdot, u^{(k,i)}, \nu)}(t_2)}.$$

We bound

$$|W_{E(\cdot,u,
u)}(t)| \leq ||u||_{\infty} \int_{U(\mathbb{Q})\setminus U(\mathbb{A})} E(ut,1,
u) du$$

and $||u||_{\infty} = \max_{h} \sup_{m} |u(mh)| = \max_{h} ||u_{h}||_{\infty}$. Suppose we know $||u_{h,j}||_{\infty} \ll X$. We want to bound

$$\sum_{k,i} \left(\max_{h} \frac{1}{\sqrt{\#\mathcal{O}_h}} \sum_{j} |c_{h,j}^{(k,i)}| \|u_{h,j}\|_{\infty} \right)^2 \ll X^2 \sum_{k,i} \left(\max_{h} \frac{1}{\sqrt{\#\mathcal{O}_h}} \sum_{j} |c_{h,j}^{(k,i)}| \right)$$

The choice of an orthonormal basis

Take

$$u_h^{(k,i)} = \begin{cases} c_h u_{h,i} \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$
Take

$$u_h^{(k,i)} = \begin{cases} c_h u_{h,i} \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

so that

$$|c_{h,j}^{(k,i)}| = \begin{cases} \delta_{i=j}c_h \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

24/27

Take

$$u_h^{(k,i)} = \begin{cases} c_h u_{h,i} \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

so that

$$|c_{h,j}^{(k,i)}| = \begin{cases} \delta_{i=j}c_h \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

we can take $|c_h|$ as small as $\frac{1}{\sqrt{d_h}}$ where $d_h = \#\{k : \#\mathcal{O}_k \approx \mathcal{O}_h\}$.

24/27

Take

$$u_h^{(k,i)} = \begin{cases} c_h u_{h,i} \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

so that

$$|c_{h,j}^{(k,i)}| = egin{cases} \delta_{i=j}c_h ext{ if } \#\mathcal{O}_k pprox \#\mathcal{O}_h \ 0 ext{ otherwise,} \end{cases}$$

we can take $|c_h|$ as small as $\frac{1}{\sqrt{d_h}}$ where $d_h = \#\{k : \#\mathcal{O}_k \approx \mathcal{O}_h\}$. If $\#\mathcal{O}_k \approx \#\mathcal{O}_h$ then $d_h = d_k$,

Take

$$u_h^{(k,i)} = \begin{cases} c_h u_{h,i} \text{ if } \#\mathcal{O}_k \approx \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

so that

$$|c_{h,j}^{(k,i)}| = \begin{cases} \delta_{i=j}c_h \text{ if } \#\mathcal{O}_k pprox \#\mathcal{O}_h \\ 0 \text{ otherwise,} \end{cases}$$

we can take $|c_h|$ as small as $\frac{1}{\sqrt{d_h}}$ where $d_h = \#\{k : \#\mathcal{O}_k \approx \mathcal{O}_h\}$. If $\#\mathcal{O}_k \approx \#\mathcal{O}_h$ then $d_h = d_k$, and hence the contribution from π is bounded by

$$X^2 \sum_{k,i} \frac{1}{d_k \# \mathcal{O}_k} \ll X^2 \sum_k \frac{\dim(V_P(k,\pi))}{d_k \# \mathcal{O}_k}$$

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

• A count for the discrete spectrum of M_P ,

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

- A count for the discrete spectrum of M_P ,
- Sup norm bounds for $u_{k,j}$,

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

- A count for the discrete spectrum of M_P ,
- Sup norm bounds for $u_{k,j}$,
- Lower bounds for the size of $\#\mathcal{O}_k$.

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

- A count for the discrete spectrum of M_P ,
- Sup norm bounds for $u_{k,j}$,
- Lower bounds for the size of $\#\mathcal{O}_k$.

We can use the Weyl law and sup norm bounds for Maaß forms on ${\rm GL}_2.$

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

- A count for the discrete spectrum of M_P ,
- Sup norm bounds for $u_{k,j}$,
- Lower bounds for the size of $\#\mathcal{O}_k$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL_2 . Evaluating the size of the orbits yields a different counting problem for each parabolic P.

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

- A count for the discrete spectrum of M_P ,
- Sup norm bounds for $u_{k,j}$,
- Lower bounds for the size of $\#\mathcal{O}_k$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL_2 . Evaluating the size of the orbits yields a different counting problem for each parabolic P.

The factor $\frac{1}{d_k}$ is important as it allows to regroup the orbits that have similar sizes *e.g.* in dyadic slices.

So the contribution from P is bounded by

$$X^2 \sum_{k} \frac{1}{d_k \# \mathcal{O}_k} \sum_{\pi \subset L^2_{disc}(M_P)} h(\nu + \nu_\pi) \dim(V_P(k, \pi)).$$

To conclude the argument we need

- A count for the discrete spectrum of M_P ,
- Sup norm bounds for $u_{k,j}$,
- Lower bounds for the size of $\#\mathcal{O}_k$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL_2 . Evaluating the size of the orbits yields a different counting problem for each parabolic P.

The factor $\frac{1}{d_k}$ is important as it allows to regroup the orbits that have similar sizes *e.g.* in dyadic slices.

In reality, the argument is more complicated as there are small orbits. Instead of bounding $\|u_{k,j}\|_{\infty}$ uniformly, we need a bound that depends

on *k*.

Bounding the sums of Kloosterman sums

Because f has compact support, the set of δ 's such that

$$\int_{U_{\sigma}(\mathbb{R})\setminus U(\mathbb{R})}\int_{U(\mathbb{R})}f(u_{1}^{-1}t_{1}^{-1}\sigma\delta t_{2}u_{2})\overline{\psi(t_{1}u_{1}^{-1}t_{1}^{-1})}\psi(t_{2}u_{2}t_{2}^{-1})du_{1}du_{2}\neq 0$$

is compact.

But the summation over δ is subject to some divisibility-by-N conditions. The upshot is as N gets large, only the identity contribution will remain on the geometric side (our formula is arguably more of a "pre-Kuznetsov" formula).

26/27

THANK YOU FOR YOUR ATTENTION!