The Kuznetsov formula for GSp_{4}

Félicien Comtat

Queen Mary University of London

March 29th 2022

Introduction

The GL_{2} Kuznetsov formula relates, for fixed integers $m, n \neq 0$ and h a "nice" test function, a sum of terms of the form

$$
h\left(t_{u}\right) a_{m}(u) \overline{a_{n}(u)}
$$

where u varies among Hecke Maaß forms, $a_{m}(u)$ is the m-th Fourier coefficient of u, and t_{u} is the spectral parameter of u to a sum of Kloosterman sums, plus a continuous contribution from Eisenstein series.

Introduction

The GL_{2} Kuznetsov formula relates, for fixed integers $m, n \neq 0$ and h a "nice" test function, a sum of terms of the form

$$
h\left(t_{u}\right) a_{m}(u) \overline{a_{n}(u)}
$$

where u varies among Hecke Maaß forms, $a_{m}(u)$ is the m-th Fourier coefficient of u, and t_{u} is the spectral parameter of u to a sum of Kloosterman sums, plus a continuous contribution from Eisenstein series.
Analogue for GSp_{4} :

- Maaß forms $\rightsquigarrow \rightarrow K_{\infty}$-fixed functions in cuspidal automorphic representations of GSp_{4},
- Fourier coefficients \longleftrightarrow Whittaker coefficients.

Introduction

The GL_{2} Kuznetsov formula relates, for fixed integers $m, n \neq 0$ and h a "nice" test function, a sum of terms of the form

$$
h\left(t_{u}\right) a_{m}(u) \overline{a_{n}(u)},
$$

where u varies among Hecke Maaß forms, $a_{m}(u)$ is the m-th Fourier coefficient of u, and t_{u} is the spectral parameter of u to a sum of Kloosterman sums, plus a continuous contribution from Eisenstein series.
Analogue for GSp_{4} :

- Maaß forms $\rightsquigarrow K_{\infty}$-fixed functions in cuspidal automorphic representations of GSp_{4},
- Fourier coefficients $\rightsquigarrow \rightarrow$ Whittaker coefficients.

Methods of proof:

- Inner product of Poincaré series: Kuznetsov (GL_{2}), Blomer, Buttcane (GL_{3}), Man (GSp_{4}), ...
- Relative trace formula: Zagier (unpublished), Knightly-Li.

Outline

(1) Automorphic forms on GSp_{4}
(2) The trace formula
(3) Applications

Table of Contents

(1) Automorphic forms on GSp_{4}

(2) The trace formula

(3) Applications

The group GSp_{4}

$\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}_{4}: \exists \mu(g) \in \mathrm{GL}_{1},{ }^{\top} g J g=\mu(g) J\right\}$, where $J=\left[\begin{array}{c} \\ -I_{2}\end{array}{ }^{\prime}\right]$.

The group GSp_{4}

$\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}_{4}: \exists \mu(g) \in \mathrm{GL}_{1},{ }^{\top} g J g=\mu(g) J\right\}$, where $J=\left[-I_{2}{ }^{I_{2}}\right]$. Parabolic subgroups $P=N_{P} M_{P}$:

- Borel subgroup $B: N_{B}=U=\left[\right.$| 1 | $* *$ |
| :---: | :---: |
| $*$ | |
| | |
| | $\underset{1}{*}$ |
| | |$] \cap \mathrm{GSp}_{4}$,

$$
M_{B}=A=\left[\begin{array}{cl}
{ }^{*} & \\
{ }^{*} & \\
& \\
& *
\end{array}\right] \cap \mathrm{GSp}_{4} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{1} \times \mathrm{GL}_{1},
$$

The group GSp_{4}

$\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}_{4}: \exists \mu(g) \in \mathrm{GL}_{1},{ }^{\top} g J g=\mu(g) J\right\}$, where $J=\left[I_{-I_{2}}{ }^{2}\right]$. Parabolic subgroups $P=N_{P} M_{P}$:

- Borel subgroup $B: N_{B}=U=\left[\right.$| 1 | $* *$ | |
| :---: | :---: | :---: |
| $*$ | | |
| | | $*$ |
| | | 1 |$] \cap \mathrm{GSp}_{4}$,

$$
M_{B}=A=\left[\begin{array}{lll}
{ }^{*} & & \\
& & \\
& & \\
& & \\
& &
\end{array}\right] \cap \mathrm{GSp}_{4} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{1} \times \mathrm{GL}_{1}
$$

- Siegel, Klingen subgroups: $B \subset P, N_{P} \subset U, M_{P} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{2}$.

The group GSp 4

$\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}_{4}: \exists \mu(g) \in \mathrm{GL}_{1},{ }^{\top} g J g=\mu(g) J\right\}$, where $J=\left[-I_{2} I_{2}\right]$. Parabolic subgroups $P=N_{P} M_{P}$:

- Borel subgroup $B: N_{B}=U=\left[\begin{array}{cc}1 & * * \\ * & \stackrel{*}{*} \\ & 1 \\ & * \\ & 1\end{array}\right] \cap \mathrm{GSp}_{4}$,

$$
M_{B}=A=\left[\begin{array}{cll}
{ }^{*} & & \\
& { }^{*} & \\
&
\end{array}\right] \cap \mathrm{GSp}_{4} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{1} \times \mathrm{GL}_{1}
$$

- Siegel, Klingen subgroups: $B \subset P, N_{P} \subset U, M_{P} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{2}$. Some compact subgroups:

$$
K_{\infty} \subset \operatorname{GSp}_{4}(\mathbb{R})=\left\{g \in \operatorname{GSp}_{4}(\mathbb{R}), g=^{\top} g^{-1}\right\} \cong U(2) \times\{ \pm 1\}
$$

The group GSp 4

$\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}_{4}: \exists \mu(g) \in \mathrm{GL}_{1},{ }^{\top} g J g=\mu(g) J\right\}$, where $J=\left[\begin{array}{c} \\ -I_{2}\end{array}{ }^{I_{2}}\right]$. Parabolic subgroups $P=N_{P} M_{P}$:

$$
M_{B}=A=\left[\begin{array}{cl}
{ }^{*} & \\
& \\
& \\
& *
\end{array}\right] \cap \mathrm{GSp}_{4} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{1} \times \mathrm{GL}_{1},
$$

- Siegel, Klingen subgroups: $B \subset P, N_{P} \subset U, M_{P} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{2}$. Some compact subgroups:

$$
\begin{gathered}
K_{\infty} \subset \operatorname{GSp}_{4}(\mathbb{R})=\left\{g \in \operatorname{GSp}_{4}(\mathbb{R}), g={ }^{\top} g^{-1}\right\} \cong U(2) \times\{ \pm 1\} \\
K_{p}=\operatorname{GSp}_{4}\left(\mathbb{Z}_{p}\right) \subset \operatorname{GSp}_{4}\left(\mathbb{Q}_{p}\right), \\
K_{p}(N)=\left\{g \in \operatorname{GSp}_{4}\left(\mathbb{Z}_{p}\right): g \equiv\left[\begin{array}{c}
\substack{* \\
* \begin{subarray}{c} { * * \\
\begin{subarray}{c}{* \\
*{ * * \\
\begin{subarray} { c } { * \\
* } } \end{subarray}} \\
{\hline}
\end{array} \bmod N\right\},\right.
\end{gathered}
$$

The group GSp 4

$\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}_{4}: \exists \mu(g) \in \mathrm{GL}_{1},{ }^{\top} g J g=\mu(g) J\right\}$, where $J=\left[\begin{array}{c} \\ -I_{2}\end{array}{ }^{\prime}\right]$. Parabolic subgroups $P=N_{P} M_{P}$:

$$
M_{B}=A=\left[\begin{array}{cc}
{ }^{*} & \\
& \\
& \\
*
\end{array}\right] \cap \mathrm{GSp}_{4} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{1} \times \mathrm{GL}_{1},
$$

- Siegel, Klingen subgroups: $B \subset P, N_{P} \subset U, M_{P} \simeq \mathrm{GL}_{1} \times \mathrm{GL}_{2}$. Some compact subgroups:

$$
\begin{aligned}
& K_{\infty} \subset \operatorname{GSp}_{4}(\mathbb{R})=\left\{g \in \operatorname{GSp}_{4}(\mathbb{R}), g={ }^{\top} g^{-1}\right\} \cong U(2) \times\{ \pm 1\} \\
& K_{p}=\operatorname{GSp}_{4}\left(\mathbb{Z}_{p}\right) \subset \operatorname{GSp}_{4}\left(\mathbb{Q}_{p}\right),
\end{aligned}
$$

$$
\begin{aligned}
& K=K_{\infty} \prod_{p} K_{p} \subset \operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right), K(N)=K_{\infty} \Pi_{p} K_{p} \subset \operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right) .
\end{aligned}
$$

The Langlands spectral decomposition

Consider the representation of $\operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ on $L^{2}\left(\mathbb{R}_{>0} \operatorname{GSp}_{4}(\mathbb{Q}) \backslash \operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)$ given by $g \cdot \phi=\phi(\cdot g)$. It decomposes as

$$
L^{2}\left(\mathbb{R}_{>0} \mathrm{GSp}_{4}(\mathbb{Q}) \backslash \mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)=\bigoplus_{\omega} L^{2}(\omega)
$$

where ω runs over characters of $\mathbb{R}_{>0} \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}}^{\times}$and $L^{2}(\omega)$ is subspace consisting in function ϕ that satisfy $\phi(g z)=\omega(z) \phi(g)$ for all $z \in \mathbb{A}_{\mathbb{Q}}^{\times}$.

The Langlands spectral decomposition

Consider the representation of $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ on $L^{2}\left(\mathbb{R}_{>0} \mathrm{GSp}_{4}(\mathbb{Q}) \backslash \mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)$ given by $g \cdot \phi=\phi(\cdot g)$. It decomposes as

$$
L^{2}\left(\mathbb{R}_{>0} \operatorname{GSp}_{4}(\mathbb{Q}) \backslash \operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)=\bigoplus_{\omega} L^{2}(\omega)
$$

where ω runs over characters of $\mathbb{R}_{>0} \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}}^{\times}$and $L^{2}(\omega)$ is subspace consisting in function ϕ that satisfy $\phi(g z)=\omega(z) \phi(g)$ for all $z \in \mathbb{A}_{\mathbb{Q}}^{\times}$. Fix such a character ω. Then we have $L^{2}(\omega)=L_{\text {disc }}^{2} \oplus L_{\text {cont }}^{2}$, where

- $L_{\text {cont }}^{2}$ is a direct integral of representations induced from parabolic subgroups by Eisenstein series attached to characters and to automorphic forms on $\mathrm{GL}_{1} \times \mathrm{GL}_{2}$, respectively.
- $L_{\text {disc }}^{2}$ is a direct sum of irreducible representations π with central character ω.

The Langlands spectral decomposition

Consider the representation of $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ on $L^{2}\left(\mathbb{R}_{>0} \mathrm{GSp}_{4}(\mathbb{Q}) \backslash \mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)$ given by $g \cdot \phi=\phi(\cdot g)$. It decomposes as

$$
L^{2}\left(\mathbb{R}_{>0} \mathrm{GSp}_{4}(\mathbb{Q}) \backslash \mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)=\bigoplus L^{2}(\omega)
$$

ω
where ω runs over characters of $\mathbb{R}_{>0} \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}}^{\times}$and $L^{2}(\omega)$ is subspace consisting in function ϕ that satisfy $\phi(g z)=\omega(z) \phi(g)$ for all $z \in \mathbb{A}_{\mathbb{Q}}^{\times}$. Fix such a character ω. Then we have $L^{2}(\omega)=L_{\text {disc }}^{2} \oplus L_{\text {cont }}^{2}$, where

- $L_{\text {cont }}^{2}$ is a direct integral of representations induced from parabolic subgroups by Eisenstein series attached to characters and to automorphic forms on $\mathrm{GL}_{1} \times \mathrm{GL}_{2}$, respectively.
- $L_{\text {disc }}^{2}$ is a direct sum of irreducible representations π with central character ω.
An irreducible automorphic representation π is called cuspidal if for every parabolic P every $\phi \in \pi$ satisfies $\int_{N_{P}(\mathbb{Q}) \backslash N_{P}(\mathbb{A})} \phi(u x) d u=0$ for all x. Analogue of Maaß forms: K_{∞}-fixed elements of cuspidal representations π_{σ}

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The ψ-Whittaker coefficient of ϕ is by definition

$$
W_{\phi}(x)=\int_{U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)} \phi(u x) \overline{\psi(u)} d u .
$$

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The ψ-Whittaker coefficient of ϕ is by definition

$$
W_{\phi}(x)=\int_{U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)} \phi(u x) \overline{\psi(u)} d u .
$$

Unlike the case of $\mathrm{GL}_{2}, W_{\phi}$ is not always non-zero, even if ϕ is not constant. For instance, Whittaker coefficients of Siegel modular forms are always zero.
If π is an irreducible automorphic representation which contains an automorphic form ϕ with $W_{\phi} \not \equiv 0$, then we say π is generic.

Whittaker coefficients

Let ψ be a fixed (generic) character of U. The ψ-Whittaker coefficient of ϕ is by definition

$$
W_{\phi}(x)=\int_{U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)} \phi(u x) \overline{\psi(u)} d u .
$$

Unlike the case of $\mathrm{GL}_{2}, W_{\phi}$ is not always non-zero, even if ϕ is not constant. For instance, Whittaker coefficients of Siegel modular forms are always zero.
If π is an irreducible automorphic representation which contains an automorphic form ϕ with $W_{\phi} \not \equiv 0$, then we say π is generic.
This is equivalent to say π has a ψ-Whittaker model, i.e, can be realized by right translation on a space of functions W with moderate growth and satisfying

$$
W(u g)=\psi(u) W(g)
$$

for all $u \in U$.

Table of Contents

(1) Automorphic forms on GSp_{4}

(2) The trace formula

(3) Applications

The automorphic kernel

Let $f: \operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right) \rightarrow \mathbb{C}$ be a smooth function satisfying $f(g z)=\overline{\omega(z)} f(g)$, compactly supported mod centre. Then we have an operator $R(f)$ on $L^{2}(\omega)$ defined by

$$
(R(f) \phi)(x)=\int_{\bar{G}(\mathbb{A})} f(y) \phi(x y) d y=\int_{\bar{G}(\mathbb{Q}) \backslash \bar{G}(\mathbb{A})} K_{f}(x, y) \phi(y) d y
$$

where $K_{f}(x, y)=\sum_{\gamma \in \bar{G}(\mathbb{Q})} f\left(x^{-1} \gamma y\right)$.

The automorphic kernel

Let $f: \operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right) \rightarrow \mathbb{C}$ be a smooth function satisfying $f(g z)=\overline{\omega(z)} f(g)$, compactly supported mod centre. Then we have an operator $R(f)$ on $L^{2}(\omega)$ defined by

$$
(R(f) \phi)(x)=\int_{\bar{G}(\mathbb{A})} f(y) \phi(x y) d y=\int_{\bar{G}(\mathbb{Q}) \backslash \bar{G}(\mathbb{A})} K_{f}(x, y) \phi(y) d y
$$

where $K_{f}(x, y)=\sum_{\gamma \in \bar{G}(\mathbb{Q})} f\left(x^{-1} \gamma y\right)$.
Informally, we have $(R(f) \phi)(x)=\left\langle K_{f}(x, \cdot), \bar{\phi}\right\rangle$. So if \mathscr{B} is an orthonormal basis of $L_{\text {disc }}^{2}$ we expect

$$
\begin{aligned}
K_{f}(x, y) & =\sum_{\phi \in \mathscr{B}}\left\langle K_{f}(x, \cdot), \bar{\phi}\right\rangle \bar{\phi}(y)+\text { cont } \\
& =\sum_{\phi \in \mathscr{B}}(R(f) \phi)(x) \bar{\phi}(y)+\text { cont }
\end{aligned}
$$

The choice of the test function

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{v}$. If f also factors, then the operator $R(f)$ induces an operator $\pi_{v}\left(f_{v}\right)$ on the space of each representation π_{v}.

The choice of the test function

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{v}$. If f also factors, then the operator $R(f)$ induces an operator $\pi_{v}\left(f_{v}\right)$ on the space of each representation π_{v}.
If f is left and right K_{∞}-invariant, then $\pi_{\infty}\left(f_{\infty}\right)$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.

The choice of the test function

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{v}$. If f also factors, then the operator $R(f)$ induces an operator $\pi_{v}\left(f_{v}\right)$ on the space of each representation π_{v}.
If f is left and right K_{∞}-invariant, then $\pi_{\infty}\left(f_{\infty}\right)$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.
But $\pi^{K_{\infty}}$ has dimension at most one, say $\pi^{K_{\infty}}=\mathbb{C} \cdot \phi_{\infty}$, so
$\pi_{\infty}\left(f_{\infty}\right)=\lambda_{f, \pi_{\infty}} \phi_{\infty}$.

The choice of the test function

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{v}$. If f also factors, then the operator $R(f)$ induces an operator $\pi_{v}\left(f_{v}\right)$ on the space of each representation π_{v}.
If f is left and right K_{∞}-invariant, then $\pi_{\infty}\left(f_{\infty}\right)$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.
But $\pi^{K_{\infty}}$ has dimension at most one, say $\pi^{K_{\infty}}=\mathbb{C} \cdot \phi_{\infty}$, so
$\pi_{\infty}\left(f_{\infty}\right)=\lambda_{f, \pi_{\infty}} \phi_{\infty}$.
Similarly it is possible to arrange the choice of f so that each $\pi_{p}^{K_{p}(N)}$ has a basis of eigenvectors of $\pi_{p}\left(f_{p}\right)$, and $\pi_{p}\left(f_{p}\right)$ annihilate the complement of this space.

The choice of the test function

Each irreducible automorphic representation π factors as $\pi \cong \bigotimes_{p \leq \infty} \pi_{v}$. If f also factors, then the operator $R(f)$ induces an operator $\pi_{v}\left(f_{v}\right)$ on the space of each representation π_{v}.
If f is left and right K_{∞}-invariant, then $\pi_{\infty}\left(f_{\infty}\right)$ has its image in $\pi^{K_{\infty}}$ and annihilate the orthogonal complement of this space.
But $\pi^{K_{\infty}}$ has dimension at most one, say $\pi^{K_{\infty}}=\mathbb{C} \cdot \phi_{\infty}$, so
$\pi_{\infty}\left(f_{\infty}\right)=\lambda_{f, \pi_{\infty}} \phi_{\infty}$.
Similarly it is possible to arrange the choice of f so that each $\pi_{p}^{K_{p}(N)}$ has a basis of eigenvectors of $\pi_{p}\left(f_{p}\right)$, and $\pi_{p}\left(f_{p}\right)$ annihilate the complement of this space.
For this choice of f, taking $\mathscr{B}_{\pi}(N)$ the basis of $\pi^{K(N)}$ obtained by the tensor product of the local basis, we obtain

$$
K_{f}(x, y)=\sum_{\pi} \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_{f}(\phi) \phi(x) \bar{\phi}(y)+\text { cont }
$$

The spectral side

Integrating previous expression against $\bar{\psi}(x) \psi(y)$ over $\left(U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)\right)^{2}$ we obtain
$\int_{\left(U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)\right)^{2}} K_{f}\left(x t_{1}, y t_{2}\right) \overline{\psi(x)} \psi(y) d x d y=\sum_{\pi} \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_{f}(\phi) W_{\phi}\left(t_{1}\right) \overline{W_{\phi}}\left(t_{2}\right)$

On the RHS, only representations π which are generic and have a non-zero $K(N)$-fixed vector contribute.

The spectral side

Integrating previous expression against $\bar{\psi}(x) \psi(y)$ over $\left(U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)\right)^{2}$ we obtain
$\int_{\left(U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)\right)^{2}} K_{f}\left(x t_{1}, y t_{2}\right) \overline{\psi(x)} \psi(y) d x d y=\sum_{\pi} \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_{f}(\phi) W_{\phi}\left(t_{1}\right) \overline{W_{\phi}}\left(t_{2}\right)$

On the RHS, only representations π which are generic and have a non-zero $K(N)$-fixed vector contribute. It is known that the Archimedean component must then be a principal series representation, i.e, induced from a character $a \mapsto a^{\rho+\nu}$ of A.

The spherical transform

In the standard induced model, the K_{∞}-fixed vector ϕ_{∞} is given by $\phi_{\infty}($ nak $)=a^{\rho+\nu}$, and hence the eigenvalue $\lambda_{f, \pi_{\infty}}$ is given by

$$
\begin{aligned}
\lambda_{f, \pi_{\infty}} & =\left(\pi_{\infty}\left(f_{\infty}\right) \phi_{\infty}\right)(1)=\int_{\bar{G}(\mathbb{R})} f_{\infty}(g) \pi_{\infty}(g) \phi(1) d g \\
& =\int_{U(\mathbb{R})} \int_{\bar{A}(\mathbb{R})} f(n a) a^{\rho+\nu} d a d n \doteq \tilde{f}(\nu),
\end{aligned}
$$

where \tilde{f} is the spherical transform of f_{∞}.

The spherical transform

In the standard induced model, the K_{∞}-fixed vector ϕ_{∞} is given by $\phi_{\infty}(n a k)=a^{\rho+\nu}$, and hence the eigenvalue $\lambda_{f, \pi_{\infty}}$ is given by

$$
\begin{aligned}
\lambda_{f, \pi_{\infty}} & =\left(\pi_{\infty}\left(f_{\infty}\right) \phi_{\infty}\right)(1)=\int_{\bar{G}(\mathbb{R})} f_{\infty}(g) \pi_{\infty}(g) \phi(1) d g \\
& =\int_{U(\mathbb{R})} \int_{\bar{A}(\mathbb{R})} f(n a) a^{\rho+\nu} d a d n \doteq \tilde{f}(\nu),
\end{aligned}
$$

where \tilde{f} is the spherical transform of f_{∞}. So the spectral side becomes

$$
\sum_{\pi} \tilde{f}\left(\nu_{\pi}\right) \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_{f_{\text {fin }}}(\phi) W_{\phi}\left(t_{1}\right) \overline{W_{\phi}}\left(t_{2}\right)+\text { cont }
$$

where $\nu_{\pi} \in \operatorname{Lie}(\bar{A})^{*}$ is the spectral parameter of π_{∞}.

The spherical transform

In the standard induced model, the K_{∞}-fixed vector ϕ_{∞} is given by $\phi_{\infty}(n a k)=a^{\rho+\nu}$, and hence the eigenvalue $\lambda_{f, \pi_{\infty}}$ is given by

$$
\begin{aligned}
\lambda_{f, \pi_{\infty}} & =\left(\pi_{\infty}\left(f_{\infty}\right) \phi_{\infty}\right)(1)=\int_{\bar{G}(\mathbb{R})} f_{\infty}(g) \pi_{\infty}(g) \phi(1) d g \\
& =\int_{U(\mathbb{R})} \int_{\bar{A}(\mathbb{R})} f(n a) a^{\rho+\nu} d a d n \doteq \tilde{f}(\nu),
\end{aligned}
$$

where \tilde{f} is the spherical transform of f_{∞}. So the spectral side becomes

$$
\sum_{\pi} \tilde{f}\left(\nu_{\pi}\right) \sum_{\phi \in \mathscr{B}_{\pi}(N)} \lambda_{f_{\text {fin }}}(\phi) W_{\phi}\left(t_{1}\right) \overline{W_{\phi}}\left(t_{2}\right)+\text { cont } .
$$

where $\nu_{\pi} \in \operatorname{Lie}(\bar{A})^{*}$ is the spectral parameter of π_{∞}.
By Harish-Chandra Paley-Wiener's theorem, it is known that, choosing appropriately the test function f_{∞}, we can produce any Paley-Wiener test function $h=\tilde{f}$ on the spectral side.

The geometric side

From now on, we assume $t_{1}, t_{2} \in A(\mathbb{Q})$. By definition of the kernel, the integral we considered may be written as

$$
\sum_{\gamma \in \bar{G}(\mathbb{Q})} \int_{(U(\mathbb{Q}) \backslash U(\mathbb{A} \mathbb{Q}))^{2}} f\left(t_{1}^{-1} x^{-1} \gamma y t_{2}\right) \overline{\psi(x)} \psi(y) d x d y=\sum_{\gamma \in U(\mathbb{Q}) \backslash \bar{G}(\mathbb{Q}) / U(\mathbb{Q})} l_{\gamma}(f),
$$

where

$$
\begin{aligned}
& I_{\gamma}(f)=\int_{H_{\gamma}(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)^{2}} f\left(x^{-1} t_{1}^{-1} \gamma t_{2} y\right) \overline{\psi\left(t_{1} x t_{1}^{-1}\right)} \psi\left(t_{2} y t_{2}^{-1}\right) d x d y, \\
H_{\gamma}= & \left\{(x, y) \in U^{2}, x^{-1} \gamma y=\gamma\right\} .
\end{aligned}
$$

The geometric side

From now on, we assume $t_{1}, t_{2} \in A(\mathbb{Q})$. By definition of the kernel, the integral we considered may be written as
$\sum_{\gamma \in \bar{G}(\mathbb{Q})} \int_{(U(\mathbb{Q}) \backslash U(\mathbb{A} \mathbb{Q}))^{2}} f\left(t_{1}^{-1} x^{-1} \gamma y t_{2}\right) \overline{\psi(x)} \psi(y) d x d y=\sum_{\gamma \in U(\mathbb{Q}) \backslash \bar{G}(\mathbb{Q}) / U(\mathbb{Q})} I_{\gamma}(f)$,
where

$$
I_{\gamma}(f)=\int_{H_{\gamma}(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)^{2}} f\left(x^{-1} t_{1}^{-1} \gamma t_{2} y\right) \overline{\psi\left(t_{1} x t_{1}^{-1}\right)} \psi\left(t_{2} y t_{2}^{-1}\right) d x d y
$$

$H_{\gamma}=\left\{(x, y) \in U^{2}, x^{-1} \gamma y=\gamma\right\}$. Using the Bruhat decomposition, $U(\mathbb{Q}) \backslash \bar{G}(\mathbb{Q}) / U(\mathbb{Q})$ consists in elements $\sigma \delta$, where σ ranges over the Weyl group, and δ over $A(\mathbb{Q})$.

Non-Archimedean part of the geometric side

By the bi- $K(N)$-invariance property of f, the non-Archimedean part of $I_{\sigma \delta}$ reduces to a finite sum $\operatorname{Kloos}_{\sigma}\left(\delta, f_{\text {fin }}, N\right)$. For simplicity, assume now that $f_{\text {fin }}$ is "trivial".

Non-Archimedean part of the geometric side

By the bi- $K(N)$-invariance property of f, the non-Archimedean part of $I_{\sigma \delta}$ reduces to a finite sum $\operatorname{Kloos}_{\sigma}\left(\delta, f_{\text {fin }}, N\right)$. For simplicity, assume now that $f_{\text {fin }}$ is "trivial".
For $\sigma=1$, only $\delta=1$ has a non-zero contribution, which is roughly $\delta\left(t_{1}, t_{2}\right)$.

Non-Archimedean part of the geometric side

By the bi- $K(N)$-invariance property of f, the non-Archimedean part of $I_{\sigma \delta}$ reduces to a finite sum $\operatorname{Kloos}_{\sigma}\left(\delta, f_{\text {fin }}, N\right)$. For simplicity, assume now that $f_{\text {fin }}$ is "trivial".
For $\sigma=1$, only $\delta=1$ has a non-zero contribution, which is roughly $\delta\left(t_{1}, t_{2}\right)$.
Among the other seven elements from the Weyl group, only the longest three give a non-zero contribution, with various divisibility conditions on the entries of δ.

Non-Archimedean part of the geometric side

By the bi- $K(N)$-invariance property of f, the non-Archimedean part of $I_{\sigma \delta}$ reduces to a finite sum $\operatorname{Kloos}_{\sigma}\left(\delta, f_{\text {fin }}, N\right)$. For simplicity, assume now that $f_{\text {fin }}$ is "trivial".
For $\sigma=1$, only $\delta=1$ has a non-zero contribution, which is roughly $\delta\left(t_{1}, t_{2}\right)$.
Among the other seven elements from the Weyl group, only the longest three give a non-zero contribution, with various divisibility conditions on the entries of δ.
So the geometric side becomes

$$
\begin{aligned}
& I_{1, \infty}\left(f_{\infty}\right) \delta\left(t_{1}, t_{2}\right)+\sum_{\delta} I_{\sigma_{1} \delta, \infty}\left(f_{\infty}\right) \mathrm{K}_{\operatorname{loos}_{\sigma_{1}}}(\delta, N) \\
&+\sum_{\delta} I_{\sigma_{2} \delta, \infty}\left(f_{\infty}\right) \mathrm{K}_{\operatorname{loos}}^{\sigma_{2}} \\
&(\delta, N) \\
&+\sum_{\delta} I_{\sigma_{l} \delta, \infty}\left(f_{\infty}\right) \mathrm{Kloos}_{\sigma_{l}}(\delta, N)
\end{aligned}
$$

Archimedean part of the geometric side

After a change of variable, the Archimedean part of $I_{\sigma \delta}(f)$ is given by

$$
\int_{U_{\sigma}(\mathbb{R}) \backslash U(\mathbb{R})} \int_{U(\mathbb{R})} f\left(u_{1}^{-1} t_{1}^{-1} \sigma \delta t_{2} u_{2}\right) \overline{\psi\left(t_{1} u_{1}^{-1} t_{1}^{-1}\right)} \psi\left(t_{2} u_{2} t_{2}^{-1}\right) d u_{1} d u_{2} .
$$

Archimedean part of the geometric side

After a change of variable, the Archimedean part of $I_{\sigma \delta}(f)$ is given by

$$
\int_{U_{\sigma}(\mathbb{R}) \backslash U(\mathbb{R})} \int_{U(\mathbb{R})} f\left(u_{1}^{-1} t_{1}^{-1} \sigma \delta t_{2} u_{2}\right) \overline{\psi\left(t_{1} u_{1}^{-1} t_{1}^{-1}\right)} \psi\left(t_{2} u_{2} t_{2}^{-1}\right) d u_{1} d u_{2} .
$$

Using Wallach's Whittaker inversion, we can show

$$
\int_{U(\mathbb{R})} f(t u g) \bar{\psi}(u) d u=\int_{\operatorname{Lie}(\bar{A})^{*}} \tilde{f}(\nu) W(-\nu, g, \psi) W\left(\nu, t^{-1}, \bar{\psi}\right) d \operatorname{spec}(\nu)
$$

where $W(-\nu, \cdot, \psi)$ is the ψ-Whittakher function with spectral parameter $-\nu=$ the K_{∞}-fixed vector in the Whittakher model of the principal series representation with spectral parameter $-\nu$.

Archimedean part of the geometric side

After a change of variable, the Archimedean part of $I_{\sigma \delta}(f)$ is given by

$$
\int_{U_{\sigma}(\mathbb{R}) \backslash U(\mathbb{R})} \int_{U(\mathbb{R})} f\left(u_{1}^{-1} t_{1}^{-1} \sigma \delta t_{2} u_{2}\right) \overline{\psi\left(t_{1} u_{1}^{-1} t_{1}^{-1}\right)} \psi\left(t_{2} u_{2} t_{2}^{-1}\right) d u_{1} d u_{2}
$$

Using Wallach's Whittaker inversion, we can show

$$
\int_{U(\mathbb{R})} f(t u g) \bar{\psi}(u) d u=\int_{\operatorname{Lie}(\bar{A})^{*}} \tilde{f}(\nu) W(-\nu, g, \psi) W\left(\nu, t^{-1}, \bar{\psi}\right) d s p e c(\nu)
$$

where $W(-\nu, \cdot, \psi)$ is the ψ-Whittakher function with spectral parameter $-\nu=$ the K_{∞}-fixed vector in the Whittakher model of the principal series representation with spectral parameter $-\nu$.
Under some conjectural interchange of integral, the whole integral would become

$$
\int_{\operatorname{Lie}(\overline{\mathcal{A}})^{*}} \tilde{f}(\nu) W\left(-\nu, t_{2}, \psi\right) W\left(\nu, t_{1}, \bar{\psi}\right) K_{\sigma}(-i \nu, \delta) d s p e c(\nu)
$$

where K_{σ} is a generalised Bessel function.

Table of Contents

(1) Automorphic forms on GSp_{4}

(2) The trace formula

(3) Applications

Satake parameters

Fix a prime p and let π_{p} be an irreducible admissible representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ which has a K_{p}-fixed vector and trivial central character. It is known that π_{p} is the unique spherical subquotient of a representation induced from a character of the form $\left[\begin{array}{llll}x & & & \\ & & & \\ & t x^{-1} & & \\ & & t y^{-1}\end{array}\right] \mapsto \sigma(t) \chi_{1}(x) \chi_{2}(y)$ for some unramified characters $\chi_{1}, \chi_{2}, \sigma$ satisfying $\sigma^{2} \chi_{1} \chi_{2}=1$.

Satake parameters

Fix a prime p and let π_{p} be an irreducible admissible representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ which has a K_{p}-fixed vector and trivial central character. It is known that π_{p} is the unique spherical subquotient of a representation induced from a character of the form $\left[\begin{array}{llll}x & & & \\ & y & & \\ & t x^{-1} & & \\ & & t y^{-1}\end{array}\right] \mapsto \sigma(t) \chi_{1}(x) \chi_{2}(y)$ for some unramified characters $\chi_{1}, \chi_{2}, \sigma$ satisfying $\sigma^{2} \chi_{1} \chi_{2}=1$. Unramified characters of \mathbb{Q}_{p}^{\times}are uniquely determined by their value at p, hence π_{p} is completely determined by the pair $(\alpha, \beta)=\left(\sigma(p), \sigma(p) \chi_{1}(p)\right)$.

Satake parameters

Fix a prime p and let π_{p} be an irreducible admissible representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ which has a K_{p}-fixed vector and trivial central character. It is known that π_{p} is the unique spherical subquotient of a representation induced from a character of the form $\left[\begin{array}{llll}x & & & \\ & & & \\ & & t x^{-1} & \\ & & t y^{-1}\end{array}\right] \mapsto \sigma(t) \chi_{1}(x) \chi_{2}(y)$ for some unramified characters $\chi_{1}, \chi_{2}, \sigma$ satisfying $\sigma^{2} \chi_{1} \chi_{2}=1$. Unramified characters of \mathbb{Q}_{p}^{\times}are uniquely determined by their value at p, hence π_{p} is completely determined by the pair $(\alpha, \beta)=\left(\sigma(p), \sigma(p) \chi_{1}(p)\right)$. Conversely, the pair (α, β) is uniquely determined by π_{p}, up to the action of the Weyl group. It is called he Satake parameters of π_{p}.

Satake parameters

Fix a prime p and let π_{p} be an irreducible admissible representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ which has a K_{p}-fixed vector and trivial central character.
It is known that π_{p} is the unique spherical subquotient of a representation induced from a character of the form $\left[\begin{array}{llll}x & & & \\ & & & \\ & & t x^{-1} & \\ & & t y^{-1}\end{array}\right] \mapsto \sigma(t) \chi_{1}(x) \chi_{2}(y)$ for some unramified characters $\chi_{1}, \chi_{2}, \sigma$ satisfying $\sigma^{2} \chi_{1} \chi_{2}=1$. Unramified characters of \mathbb{Q}_{p}^{\times}are uniquely determined by their value at p, hence π_{p} is completely determined by the pair $(\alpha, \beta)=\left(\sigma(p), \sigma(p) \chi_{1}(p)\right)$. Conversely, the pair (α, β) is uniquely determined by π_{p}, up to the action of the Weyl group. It is called he Satake parameters of π_{p}. π_{p} is tempered if and only if it Satake parameters $(\alpha, \beta) \in \mathbb{S}^{1} \times \mathbb{S}^{1}$. It is believed that if π_{p} is the local constituent of the automorphic representation attached to a $\mathrm{GSp}_{4} \mathrm{Maaß}$ form, then π_{p} is tempered (Generalised Ramanujan Conjecture).

Equidistribution of Satake parameters

Let $\mathcal{F}(N)=\bigcup_{\pi} \mathscr{B}_{\pi}(N)$, orthonormal basis of the space of $K(N)$-fixed Maaß forms on $\operatorname{GSp}(\mathbb{A})$.

Equidistribution of Satake parameters

Let $\mathcal{F}(N)=\bigcup_{\pi} \mathscr{B}_{\pi}(N)$, orthonormal basis of the space of $K(N)$-fixed Maaß forms on $\operatorname{GSp}(\mathbb{A})$. Fix a prime p and for $\phi \in \pi$ denote by $\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)$ the Satake parameters of π_{p}. Also fix the test function $h=\tilde{f}$ in the Kuznetsov formula. Define $w(\phi)=h\left(\nu_{\phi}\right)\left|W_{\phi}(1)\right|^{2}$. I want to show that the set

$$
\left\{\left(\alpha_{p, \phi}, \beta_{p, \phi}\right): \phi \in \mathcal{F}(N)\right\} \subset \mathbb{C}^{2} / W
$$

weighted by $w(\phi)$, equidistributes with respect to the GSp_{4} Sato-Tate measure $\mu_{S T}$ as N tends to infinity among integers coprimes to p.

Equidistribution of Satake parameters

Let $\mathcal{F}(N)=\bigcup_{\pi} \mathscr{B}_{\pi}(N)$, orthonormal basis of the space of $K(N)$-fixed Maaß forms on $\operatorname{GSp}(\mathbb{A})$. Fix a prime p and for $\phi \in \pi$ denote by $\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)$ the Satake parameters of π_{p}. Also fix the test function $h=\tilde{f}$ in the Kuznetsov formula. Define $w(\phi)=h\left(\nu_{\phi}\right)\left|W_{\phi}(1)\right|^{2}$. I want to show that the set

$$
\left\{\left(\alpha_{p, \phi}, \beta_{p, \phi}\right): \phi \in \mathcal{F}(N)\right\} \subset \mathbb{C}^{2} / W
$$

weighted by $w(\phi)$, equidistributes with respect to the GSp_{4} Sato-Tate measure $\mu_{S T}$ as N tends to infinity among integers coprimes to p. This means that for any continuous bounded W-invariant function f on \mathbb{C}^{2} we have

$$
\lim _{N \rightarrow \infty} \frac{\sum_{\phi \in \mathcal{F}(N)} w(\phi) f\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)}{\sum_{\phi \in \mathcal{F}(N)} w(\phi)}=\int_{\mathbb{C}^{2} / W} f d \mu_{S T}
$$

This is consistent with the Generalised Ramanujan Conjecture.

Strategy

Taking $t_{1}=1$ and $t_{2}=\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & p^{k-i} & \\ & & & p^{k-j}\end{array}\right]$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$
\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i, j, k}\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)
$$

with $f_{i, j, k}(\alpha, \beta)=W_{\alpha, \beta}\left(\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & p^{k-i} & \\ & & & p^{k-j}\end{array}\right]\right)$, where $W_{\alpha, \beta}$ is the
(normalized) Whittaker function for the representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ with Satake parameters (α, β).

Strategy

Taking $t_{1}=1$ and $t_{2}=\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & p^{k-i} & \\ & & & p^{k-j}\end{array}\right]$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$
\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i, j, k}\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)
$$

with $f_{i, j, k}(\alpha, \beta)=W_{\alpha, \beta}\left(\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & p^{k-i} & \\ & & & p^{k-j}\end{array}\right]\right)$, where $W_{\alpha, \beta}$ is the
(normalized) Whittaker function for the representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ with Satake parameters (α, β).
The identity contribution in the geometric side is $\delta_{(i, j, k)=(0,0,0)}$.

Strategy

Taking $t_{1}=1$ and $t_{2}=\left[\begin{array}{lllll}p^{i} & & & \\ & p^{j} & & \\ & & & \\ & & p^{k-i} & \\ & & p^{k-j}\end{array}\right]$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$
\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i, j, k}\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)
$$

with $f_{i, j, k}(\alpha, \beta)=W_{\alpha, \beta}\left(\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & p^{k-i} & \\ & & p^{k-j}\end{array}\right]\right)$, where $W_{\alpha, \beta}$ is the
(normalized) Whittaker function for the representation of $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ with Satake parameters (α, β).
The identity contribution in the geometric side is $\delta_{(i, j, k)=(0,0,0)}$.
Moreover, $f_{0,0,0}=1$, and, using the Casselman-Shalika formula, one can show that the various $f_{i, j, k}$ are orthogonal for the Sato-Tate measure, and span the space of continuous functions on $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}\right) / W$.

Strategy

Taking $t_{1}=1$ and $t_{2}=\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & & \\ & & p^{k-i} & \\ & & p^{k-j}\end{array}\right]$, the cuspidal term in the spectral side of the Kuznetsov formula gives

$$
\sum_{\phi \in \mathcal{F}(N)} w(\phi) f_{i, j, k}\left(\alpha_{p, \phi}, \beta_{p, \phi}\right)
$$

with $f_{i, j, k}(\alpha, \beta)=W_{\alpha, \beta}\left(\left[\begin{array}{llll}p^{i} & & & \\ & p^{j} & & \\ & & p^{k-i} & \\ & & & p^{k-j}\end{array}\right]\right)$, where $W_{\alpha, \beta}$ is the
(normalized) Whittaker function for the representation of $\operatorname{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ with Satake parameters (α, β).
The identity contribution in the geometric side is $\delta_{(i, j, k)=(0,0,0)}$.
Moreover, $f_{0,0,0}=1$, and, using the Casselman-Shalika formula, one can show that the various $f_{i, j, k}$ are orthogonal for the Sato-Tate measure, and span the space of continuous functions on $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}\right) / W$. So only remains to bound the continuous contribution and the sum of Kloosterman sums.

The continuous contributions

Formally similar to the cuspidal contribution with following modifications

$$
\begin{aligned}
\sum_{\pi \subset L_{\text {disc }}^{2}\left(\operatorname{GSp}_{4}\right)} & \sum_{\nu \in i \operatorname{Lie}\left(\overline{A_{P}}\right)^{*}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} \\
\phi \in \pi \leftrightarrow & E(\cdot, u, \nu) \in \operatorname{lnd}_{P}^{\mathrm{GSp}_{4}}\left(1_{N_{P}} \otimes \exp (\nu) \otimes \pi\right),
\end{aligned}
$$

where u ranges over an ON basis \mathscr{B}_{π} of the space $\mathscr{H}_{P}(\pi)$ of functions st

- u is left-invariant by $N_{P}(\mathbb{A})$,
- for all $k \in \operatorname{GSp}_{4}(\mathbb{A})$ we have $u_{k} \doteq[m \mapsto u(m k)] \in \pi$
- u is right-invariant by $K(N)$,

The continuous contributions

Formally similar to the cuspidal contribution with following modifications

$$
\begin{aligned}
\sum_{\pi \subset L_{\text {disc }}^{2}\left(\mathrm{GSp}_{4}\right)} & \sum_{\nu \in i \operatorname{Lie}\left(\overline{A_{P}}\right)^{*}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} \\
\phi \in \pi & \longmapsto(\cdot, u, \nu) \in \operatorname{Ind}_{P}^{\mathrm{GP}_{4}}\left(1_{N_{P}} \otimes \exp (\nu) \otimes \pi\right),
\end{aligned}
$$

where u ranges over an ON basis \mathscr{B}_{π} of the space $\mathscr{H}_{P}(\pi)$ of functions st

- u is left-invariant by $N_{P}(\mathbb{A})$,
- for all $k \in \operatorname{GSp}_{4}(\mathbb{A})$ we have $u_{k} \doteq[m \mapsto u(m k)] \in \pi$
- u is right-invariant by $K(N)$, and

$$
E(x, u, \nu)=\sum_{\gamma \in P(\mathbb{Q}) \backslash \operatorname{GSp}_{4}(\mathbb{Q})} u(\gamma x) \exp \left(\left(\nu+\rho_{P}\right)\left(H_{P}(\gamma x)\right)\right) .
$$

The continuous contributions

Formally similar to the cuspidal contribution with following modifications

$$
\begin{aligned}
\sum_{\pi \subset L_{\text {disc }}^{2}\left(\mathrm{GSp}_{4}\right)} & \sum_{\nu \in i \operatorname{Lie}\left(\overline{A_{P}}\right)^{*}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} \\
\phi \in \pi \leadsto & E(\cdot, u, \nu) \in \operatorname{Ind}_{P}^{\mathrm{GP}_{4}}\left(1_{N_{P}} \otimes \exp (\nu) \otimes \pi\right),
\end{aligned}
$$

where u ranges over an ON basis \mathscr{B}_{π} of the space $\mathscr{H}_{P}(\pi)$ of functions st

- u is left-invariant by $N_{P}(\mathbb{A})$,
- for all $k \in \operatorname{GSp}_{4}(\mathbb{A})$ we have $u_{k} \doteq[m \mapsto u(m k)] \in \pi$
- u is right-invariant by $K(N)$, and

$$
E(x, u, \nu)=\sum_{\gamma \in P(\mathbb{Q}) \backslash \operatorname{GSp}_{4}(\mathbb{Q})} u(\gamma x) \exp \left(\left(\nu+\rho_{P}\right)\left(H_{P}(\gamma x)\right)\right) .
$$

For all $\nu \in \operatorname{Lie}\left(\overline{A_{P}}\right)^{*}$ we want to bound

$$
\sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \sum_{u \in \mathscr{B}_{\pi}} W_{E(\cdot, u, \nu)}\left(t_{1}\right) \overline{W_{E(\cdot, u, \nu)}\left(t_{2}\right)}
$$

Explicit description of $\mathscr{H}_{P}(\pi)$

By the Iwasawa decomposition, u is completely determined by $\left(u_{k}\right)_{k \in K}$.

Explicit description of $\mathscr{H}_{P}(\pi)$

By the Iwasawa decomposition, u is completely determined by $\left(u_{k}\right)_{k \in K}$. The right- $K(N)$-invariance implies that for all $\gamma \in K(N)$ we have

$$
u_{k \gamma}=u_{k}
$$

Explicit description of $\mathscr{H}_{P}(\pi)$

By the Iwasawa decomposition, u is completely determined by $\left(u_{k}\right)_{k \in K}$. The right- $K(N)$-invariance implies that for all $\gamma \in K(N)$ we have

$$
u_{k \gamma}=u_{k} .
$$

Note that if $\gamma \in P(\mathbb{A}) \cap K$ then we have

$$
u_{\gamma k}(m)=u(m \gamma k)=\left[\pi(\gamma) u_{k}\right](m)
$$

Explicit description of $\mathscr{H}_{P}(\pi)$

By the Iwasawa decomposition, u is completely determined by $\left(u_{k}\right)_{k \in K}$. The right- $K(N)$-invariance implies that for all $\gamma \in K(N)$ we have

$$
u_{k \gamma}=u_{k}
$$

Note that if $\gamma \in P(\mathbb{A}) \cap K$ then we have

$$
u_{\gamma k}(m)=u(m \gamma k)=\left[\pi(\gamma) u_{k}\right](m)
$$

In particular, if $\gamma k \cdot K(N)=k \cdot K(N)$ then $\pi(\gamma) u_{k}=u_{k}$.

Explicit description of $\mathscr{H}_{P}(\pi)$

By the Iwasawa decomposition, u is completely determined by $\left(u_{k}\right)_{k \in K}$. The right- $K(N)$-invariance implies that for all $\gamma \in K(N)$ we have

$$
u_{k \gamma}=u_{k}
$$

Note that if $\gamma \in P(\mathbb{A}) \cap K$ then we have

$$
u_{\gamma k}(m)=u(m \gamma k)=\left[\pi(\gamma) u_{k}\right](m)
$$

In particular, if $\gamma k \cdot K(N)=k \cdot K(N)$ then $\pi(\gamma) u_{k}=u_{k}$. Hence

$$
\begin{aligned}
\mathscr{H}_{P}(\pi) & \simeq \bigoplus_{k \in(P(\mathbb{A}) \cap K) \backslash K / K(N)} V_{P}(k, \pi) \\
u & \mapsto\left(u_{k}\right)
\end{aligned}
$$

where $V_{P}(k, \pi)$ is the (finite dimensional) space of vectors in π that are invariant by $\Gamma_{P, k}(N) \doteq \operatorname{Stab}_{P(\mathbb{A}) \cap K}(k \cdot K(N))$.

Orthonormal basis of $\mathscr{H}_{P}(\pi)$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$
\langle u, v\rangle=\int_{K} \int_{M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})} u(m k) \bar{v}(m k) d m d k
$$

Orthonormal basis of $\mathscr{H}_{P}(\pi)$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$
\begin{aligned}
\langle u, v\rangle & =\int_{K} \int_{M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})} u(m k) \bar{v}(m k) d m d k \\
& =\sum_{k \in K / K(N)}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)}
\end{aligned}
$$

Orthonormal basis of $\mathscr{H}_{P}(\pi)$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$
\begin{aligned}
\langle u, v\rangle & =\int_{K} \int_{M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})} u(m k) \bar{v}(m k) d m d k \\
& =\sum_{k \in K / K(N)}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)} \\
& =\sum_{k \in(P(\mathbb{A}) \cap K) \backslash K / K(N)} \# \mathcal{O}_{k}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)},
\end{aligned}
$$

where \mathcal{O}_{k} is the $P(\mathbb{A}) \cap K$-orbit of $k \cdot K(N)$ inside $K / K(N)$.

Orthonormal basis of $\mathscr{H}_{P}(\pi)$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$
\begin{aligned}
\langle u, v\rangle & =\int_{K} \int_{M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})} u(m k) \bar{v}(m k) d m d k \\
& =\sum_{k \in K / K(N)}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)} \\
& =\sum_{k \in(P(\mathbb{A}) \cap K) \backslash K / K(N)} \# \mathcal{O}_{k}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)},
\end{aligned}
$$

where \mathcal{O}_{k} is the $P(\mathbb{A}) \cap K$-orbit of $k \cdot K(N)$ inside $K / K(N)$.
Fix an orthonormal basis $\left(u_{k, j}\right)_{j}$ of $V_{P}(k, \pi)$. Consider an orthonormal basis $\mathscr{B}_{\pi}=\left(u^{(k, i)}\right)_{(k, i)}$ of $\mathscr{H}_{P}(\pi)$.

Orthonormal basis of $\mathscr{H}_{P}(\pi)$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$
\begin{aligned}
\langle u, v\rangle & =\int_{K} \int_{M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})} u(m k) \bar{v}(m k) d m d k \\
& =\sum_{k \in K / K(N)}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)} \\
& =\sum_{k \in(P(\mathbb{A}) \cap K) \backslash K / K(N)} \# \mathcal{O}_{k}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)},
\end{aligned}
$$

where \mathcal{O}_{k} is the $P(\mathbb{A}) \cap K$-orbit of $k \cdot K(N)$ inside $K / K(N)$.
Fix an orthonormal basis $\left(u_{k, j}\right)_{j}$ of $V_{P}(k, \pi)$. Consider an orthonormal basis $\mathscr{B}_{\pi}=\left(u^{(k, i)}\right)_{(k, i)}$ of $\mathscr{H}_{P}(\pi)$. Then for all $h \in(P \cap K) \backslash K / K(N)$

$$
u_{h}^{(k, i)}=\frac{1}{\sqrt{\# \mathcal{O}_{h}}} \sum_{j} c_{h, j}^{(k, i)} u_{h, j}
$$

Orthonormal basis of $\mathscr{H}_{P}(\pi)$

The relevant inner product on $\mathscr{H}_{P}(\pi)$ is given by

$$
\begin{aligned}
\langle u, v\rangle & =\int_{K} \int_{M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})} u(m k) \bar{v}(m k) d m d k \\
& =\sum_{k \in K / K(N)}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)} \\
& =\sum_{k \in(P(\mathbb{A}) \cap K) \backslash K / K(N)} \# \mathcal{O}_{k}\left\langle u_{k}, v_{k}\right\rangle_{L^{2}\left(M_{P}(\mathbb{Q}) A_{P}(\mathbb{R}) \backslash M_{P}(\mathbb{A})\right)},
\end{aligned}
$$

where \mathcal{O}_{k} is the $P(\mathbb{A}) \cap K$-orbit of $k \cdot K(N)$ inside $K / K(N)$.
Fix an orthonormal basis $\left(u_{k, j}\right)_{j}$ of $V_{P}(k, \pi)$. Consider an orthonormal basis $\mathscr{B}_{\pi}=\left(u^{(k, i)}\right)_{(k, i)}$ of $\mathscr{H}_{P}(\pi)$. Then for all $h \in(P \cap K) \backslash K / K(N)$

$$
u_{h}^{(k, i)}=\frac{1}{\sqrt{\# \mathcal{O}_{h}}} \sum_{j} c_{h, j}^{(k, i)} u_{h, j}, \text { with } \sum_{h, j} c_{h, j}^{\left(k_{1}, i_{1}\right)} \overline{c_{h, j}^{\left(k_{2}, i_{2}\right)}}=\delta_{\left(k_{1}, i_{1}\right)=\left(k_{2}, i_{2}\right)}
$$

An optimization problem

We want to bound

$$
\sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \sum_{k, i} W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{1}\right) \overline{W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{2}\right)} .
$$

An optimization problem

We want to bound

$$
\sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \sum_{k, i} W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{1}\right) \overline{W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{2}\right)} .
$$

We bound

$$
\left|W_{E(\cdot, u, \nu)}(t)\right| \leq\|u\|_{\infty} \int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} E(u t, 1, \nu) d u
$$

An optimization problem

We want to bound

$$
\sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \sum_{k, i} W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{1}\right) \overline{W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{2}\right)} .
$$

We bound

$$
\left|W_{E(\cdot, u, \nu)}(t)\right| \leq\|u\|_{\infty} \int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} E(u t, 1, \nu) d u
$$

and $\|u\|_{\infty}=\max _{h} \sup _{m}|u(m h)|$

An optimization problem

We want to bound

$$
\sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \sum_{k, i} W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{1}\right) \overline{W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{2}\right)} .
$$

We bound

$$
\left|W_{E(\cdot, u, \nu)}(t)\right| \leq\|u\|_{\infty} \int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} E(u t, 1, \nu) d u
$$

$$
\text { and }\|u\|_{\infty}=\max _{h} \sup _{m}|u(m h)|=\max _{h}\left\|u_{h}\right\|_{\infty}
$$

An optimization problem

We want to bound

$$
\sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \sum_{k, i} W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{1}\right) \overline{W_{E\left(\cdot, u^{(k, i)}, \nu\right)}\left(t_{2}\right)} .
$$

We bound

$$
\left|W_{E(\cdot, u, \nu)}(t)\right| \leq\|u\|_{\infty} \int_{U(\mathbb{Q}) \backslash U(\mathbb{A})} E(u t, 1, \nu) d u
$$

and $\|u\|_{\infty}=\max _{h} \sup _{m}|u(m h)|=\max _{h}\left\|u_{h}\right\|_{\infty}$. Suppose we know $\left\|u_{h, j}\right\|_{\infty} \ll X$. We want to bound
$\sum_{k, i}\left(\max _{h} \frac{1}{\sqrt{\# \mathcal{O}_{h}}} \sum_{j}\left|c_{h, j}^{(k, i)}\right|\left\|u_{h, j}\right\|_{\infty}\right)^{2} \ll X^{2} \sum_{k, i}\left(\max _{h} \frac{1}{\sqrt{\# \mathcal{O}_{h}}} \sum_{j}\left|c_{h, j}^{(k, i)}\right|\right)$

The choice of an orthonormal basis

Take

$$
u_{h}^{(k, i)}=\left\{\begin{array}{l}
c_{h} u_{h, i} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

The choice of an orthonormal basis

Take

$$
u_{h}^{(k, i)}=\left\{\begin{array}{l}
c_{h} u_{h, i} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

so that

$$
\left|c_{h, j}^{(k, i)}\right|=\left\{\begin{array}{l}
\delta_{i=j} c_{h} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

The choice of an orthonormal basis

Take

$$
u_{h}^{(k, i)}=\left\{\begin{array}{l}
c_{h} u_{h, i} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

so that

$$
\left|c_{h, j}^{(k, i)}\right|=\left\{\begin{array}{l}
\delta_{i=j} c_{h} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

we can take $\left|c_{h}\right|$ as small as $\frac{1}{\sqrt{d_{h}}}$ where $d_{h}=\#\left\{k: \# \mathcal{O}_{k} \approx \mathcal{O}_{h}\right\}$.

The choice of an orthonormal basis

Take

$$
u_{h}^{(k, i)}=\left\{\begin{array}{l}
c_{h} u_{h, i} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

so that

$$
\left|c_{h, j}^{(k, i)}\right|=\left\{\begin{array}{l}
\delta_{i=j} c_{h} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

we can take $\left|c_{h}\right|$ as small as $\frac{1}{\sqrt{d_{h}}}$ where $d_{h}=\#\left\{k: \# \mathcal{O}_{k} \approx \mathcal{O}_{h}\right\}$. If $\# \mathcal{O}_{k} \approx \# \mathcal{O}_{h}$ then $d_{h}=d_{k}$,

The choice of an orthonormal basis

Take

$$
u_{h}^{(k, i)}=\left\{\begin{array}{l}
c_{h} u_{h, i} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

so that

$$
\left|c_{h, j}^{(k, i)}\right|=\left\{\begin{array}{l}
\delta_{i=j} c_{h} \text { if } \# \mathcal{O}_{k} \approx \# \mathcal{O}_{h} \\
0 \text { otherwise }
\end{array}\right.
$$

we can take $\left|c_{h}\right|$ as small as $\frac{1}{\sqrt{d_{h}}}$ where $d_{h}=\#\left\{k: \# \mathcal{O}_{k} \approx \mathcal{O}_{h}\right\}$. If $\# \mathcal{O}_{k} \approx \# \mathcal{O}_{h}$ then $d_{h}=d_{k}$, and hence the contribution from π is bounded by

$$
X^{2} \sum_{k, i} \frac{1}{d_{k} \# \mathcal{O}_{k}} \ll X^{2} \sum_{k} \frac{\operatorname{dim}\left(V_{P}(k, \pi)\right)}{d_{k} \# \mathcal{O}_{k}}
$$

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},
- Sup norm bounds for $u_{k, j}$,

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},
- Sup norm bounds for $u_{k, j}$,
- Lower bounds for the size of $\# \mathcal{O}_{k}$.

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},
- Sup norm bounds for $u_{k, j}$,
- Lower bounds for the size of $\# \mathcal{O}_{k}$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL_{2}.

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},
- Sup norm bounds for $u_{k, j}$,
- Lower bounds for the size of $\# \mathcal{O}_{k}$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL2. Evaluating the size of the orbits yields a different counting problem for each parabolic P.

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},
- Sup norm bounds for $u_{k, j}$,
- Lower bounds for the size of $\# \mathcal{O}_{k}$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL2. Evaluating the size of the orbits yields a different counting problem for each parabolic P.
The factor $\frac{1}{d_{k}}$ is important as it allows to regroup the orbits that have similar sizes e.g. in dyadic slices.

Bounding the continuous contribution (work in progress)

So the contribution from P is bounded by

$$
X^{2} \sum_{k} \frac{1}{d_{k} \# \mathcal{O}_{k}} \sum_{\pi \subset L_{\text {disc }}^{2}\left(M_{P}\right)} h\left(\nu+\nu_{\pi}\right) \operatorname{dim}\left(V_{P}(k, \pi)\right)
$$

To conclude the argument we need

- A count for the discrete spectrum of M_{P},
- Sup norm bounds for $u_{k, j}$,
- Lower bounds for the size of $\# \mathcal{O}_{k}$.

We can use the Weyl law and sup norm bounds for Maaß forms on GL2. Evaluating the size of the orbits yields a different counting problem for each parabolic P.
The factor $\frac{1}{d_{k}}$ is important as it allows to regroup the orbits that have similar sizes e.g. in dyadic slices.
In reality, the argument is more complicated as there are small orbits. Instead of bounding $\left\|u_{k, j}\right\|_{\infty}$ uniformly, we need a bound that depends on k.

Bounding the sums of Kloosterman sums

Because f has compact support, the set of δ 's such that

$$
\int_{U_{\sigma}(\mathbb{R}) \backslash U(\mathbb{R})} \int_{U(\mathbb{R})} f\left(u_{1}^{-1} t_{1}^{-1} \sigma \delta t_{2} u_{2}\right) \overline{\psi\left(t_{1} u_{1}^{-1} t_{1}^{-1}\right)} \psi\left(t_{2} u_{2} t_{2}^{-1}\right) d u_{1} d u_{2} \neq 0
$$

is compact.
But the summation over δ is subject to some divisibility-by- N conditions. The upshot is as N gets large, only the identity contribution will remain on the geometric side (our formula is arguably more of a "pre-Kuznetsov" formula).

THANK YOU FOR YOUR ATTENTION!

